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PREFACE 

This volume contains the full-length papers presented in the 7th International Conference on 

Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2019) 

that was held on June 24-26, 2019 in Crete, Greece.  

COMPDYN 2019 is one of the 32 Thematic Conferences of the European Community on 

Computational Methods in Applied Sciences (ECCOMAS) to be held in 2019 and is also a Special 

Interest Conference of the International Association for Computational Mechanics (IACM).  The 

purpose of this Conference series is to bring together the scientific communities of Computational 

Mechanics, Structural Dynamics and Earthquake Engineering, to act as the forum for exchanging 

ideas in topics of mutual interests and to enhance the links between research groups with 

complementary activities. We believe that the communities of Structural Dynamics and 

Earthquake Engineering will benefit from their exposure to advanced computational methods and 

software tools which can highly assist in tackling complex problems in dynamic and seismic 

analysis and design, while also giving the opportunity to the Computational Mechanics community 

to be exposed to very important engineering problems of great social interest. The COMPDYN 

2019 Conference is supported by the National Technical University of Athens (NTUA), the 

European Association for Structural Dynamics (EASD), the European Association for Earthquake 

Engineering (EAEE), the Greek Association for Computational Mechanics (GRACM). 

The editors of this volume would like to thank all authors for their contributions. Special thanks go 

to the colleagues who contributed to the organization of the Minisymposia and to the reviewers 

who, with their work, contributed to the scientific quality of this e-book.  

M. Papadrakakis 

National Technical University of Athens, Greece 

M. Fragiadakis  

National Technical University of Athens, Greece 
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Abstract. In this work, a comparative study between several numerical methodologies for the

seismic analysis of offshore wind turbines on deep foundations (monobuckets or monopiles)

is presented. Three formulations are compared within the scope of linear elasticity. First, a

coupled Boundary Element – Finite Element (BEM–FEM) model is considered for obtaining

the reference results. This methodology makes use of boundary elements to discretize the soil,

while modelling the actual geometry of the hollow pile through shell finite elements. The second

model corresponds to a formulation based on the integral expression of the reciprocity theorem

in elastodynamics and the use of specific Green’s functions for the layered half space for the

modeling of soil, and the treatment of the pile as unidimensional beam elements. Finally, a

Beam-on-Dynamic-Winkler-Foundation (BDWF) model is also considered as a commonly used

simple tool for the analysis of deep foundations. The results are presented in terms of variables

of interest for the design of offshore wind turbines. From the analyses, the applicability range of

these methodologies can be established depending on the properties of the turbine-foundation-

soil system.

Keywords: offshore wind turbines, bucket foundations, pile foundations, soil-structure interac-

tion, seismic analysis
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G.M. Álamo, J.D.R. Bordón, L.A. Padrón, J.J. Aznárez and O. Maeso

1 INTRODUCTION

Pile and bucket (also known as suction buckets, caissons, piles or anchors depending on the

context) foundations are being used as foundations of fixed Offshore Wind Turbines (OWT) [1].

These solutions configured as a single foundation element or multiple elements are considered

at locations with shallow and intermediate water depths (up to 50 meters). Although both are

topologically similar, i.e. steel tubular structures, they differ from each other in the diameter D,

wall thickness to diameter ratio t/D, length to diameter ratio L/D and hence also in the instal-

lation method. Typical monopiles for OWT are installed by pile driving using huge hydraulic

hammers, and they have diameters around 3 to 6 meters (although XL monopiles with diameters

up to 9 meters are also present in the industry), wall thickness to diameter ratios t/D ≈ 0.01

(1%) and length to diameter ratios L/D ≥ 5. Typical buckets are installed by suction, and they

have diameters around 5 to 15 meters, wall thickness to diameter ratios t/D ≈ 0.001 (1‰), and

length to diameter ratios L/D ≤ 6 [2, 3] (L/D ≈ 1 for sands, L/D ≈ 3 for stiff clays).

The use of large diameter and relatively short monopiles and buckets with such a thin-walled

hollow cross-section is challenging from the modelling of the dynamic response point of view.

In recent years, there has been a considerable effort for studying the influence of different factors

(e.g. soil stratigraphy [4] and contact conditions [5]) and the characterisation of the dynamic

response. To this end, rigorous continuum models based on the Boundary Element Method

(BEM) or the Finite Element Method (FEM) have great generality and can be used, but they

are time consuming at the pre-processing stage and computationally expensive at the solving

stage. This forces the analyst to solve a limited number of cases, or to use (and sometimes mis-

use) other simpler models. For this reason, many models with different degrees of simplifying

assumptions have been developed over the last years, see e.g. [6, 7, 8]. Particularly attrac-

tive are one-dimensional models, which are typically cheap to run. However, seismic inputs

may contain energy in the range of frequencies with wavelengths equal or smaller than diame-

ters, and thus it is not clear to what extent they remain valid for monopiles and buckets lately

encountered.

The aim of this paper is to perform a comparative study between three foundation models

(BEM–FEM model with soil-shell interaction [7], integral model with soil-beam interaction

[8] and a Beam-on-Dynamic-Winkler-Foundation (BDWF) model [9]) for the evaluation of the

seismic response of OWTs founded on deep (monopile and bucket) foundations.

The rest of the paper is organized as follows. Section 2 describes the problem at hand,

while Section 3 describes the methodologies considered for its analysis. Section 4 contains a

presentation and discussion of the obtained results. Finally, section 5 presents the conclusions.

2 PROBLEM DEFINITION

For the sake of conciseness, the present study is limited to the comparison between results

from the previously mentioned three models for a fixed configuration where only foundation

L/D ratio is varied. Nonetheless, the fixed parameters are set to typical values which are repre-

sentative of current OWTs.

The turbine-monopile-foundation system is defined based on the properties of the reference

NREL-5MW OWT [10], see Fig. 1. The tower presents a hollow section with variable diameter

that goes from 6 m at its base to 3.87 m at hub height. A constant thickness to diameter ratio

of 0.45% is assumed. The tower length is 70 m. The supporting structure corresponds to a

monopile with a length of 20 m, 6 m diameter and a thickness ratio of 1%. No transition piece

is considered in the analyses. The foundation element (pile/bucket) presents the same diameter
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Figure 1: Problem layout and substructuring model

D and thickness as the monopile, while various embedment lengths L are assumed in order to

cover the typical range of aspect ratios (L/D from 2 to 10), see Fig. 2a.

Steel material properties are considered for the tower, supporting monopile and foundation

element: Young’s modulus 210 GPa, density 7850 kg/m3 and Poisson’s ratio 0.25. For the

superstructure an hysteretic damping coefficient 2.5% is considered.

The soil properties are selected in order to reproduce a saturated media through elastic equiv-

alent properties: shear wave velocity 200 m/s, density = 2000 kg/m3, Poisson’s ratio 0.49 and

hysteretic damping coefficient 5%.

The considered seismic excitation is a vertically incident shear wave. The free-field wave

motion is denoted as u f f .

3 METHODOLOGY

3.1 Substructuring model

The seismic response of the OWT-foundation system is computed through a 2-D substruc-

turing model, see Fig. 1. The superstructure, i.e. tower and supporting pile, is modelled with

Finite Elements. Two-noded Bernoulli beam elements with constant-section are considered. A

high-enough number of them to adequately represent the dynamic behaviour of the structure

and the stiffness of the conical tower is used. The mass of the rotor and nacelle is included as a

point mass added at the highest node of the tower.

The soil-foundation interaction is included through the impedance functions and kinematic

interaction factors computed by each foundation model, see Fig. 2. The firsts represent the rela-

tion between the forces (moments) and displacements (rotations) produced atop the foundation

element. These impedance functions are frequency-dependent complex values whose real and

imaginary components represent the stiffness and damping of the foundation, respectively. Be-

cause only the lateral behaviour of the system is studied, just the horizontal KH , rocking KR and

coupled horizontal-rocking KHR impedance functions are considered. On the other hand, the

kinematic interaction factors represent the filtering effects of the foundation and are computed
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as the relation of the displacement (or rotation) at the head of the pile/bucket and the free-field

motion. In this work, the translational and rotational kinematic interaction factors are denoted

as Iu and Iθ , respectively.

Finally, for comparison purposes, it would be also interesting to compute the response of the

system neglecting the SSI effect, i.e. under the rigid base assumption. In order to do so, the free

field motion is directly applied at the mud-line node of the superstructure, while restricting its

rotation.

3.2 Foundation models

3.2.1 BEM-FEM model with soil-shell interaction

Reference results are obtained from a rigorous BEM-FEM model [7] which considers the

interaction between the pile and the soil as the interaction of the pile shell and the surrounding

(interior and exterior) soil, see Fig. 2b. The only assumption is related to the shell interaction,

which is reduced to the mid-surface of the shell. Taking into account that t/D ratios are typically

well below 5%, it is virtually a continuum model. A concise description of this model is outlined

below, for more details see [7].

The soil region Ωs is treated using the BEM. The BEM is based on the collocation of Bound-

ary Integral Equations (BIE) relating displacements uk and tractions tk throughout the boundary

of the region. The boundary of Ωs is Γ = ∂Ωs, which is composed in two parts: free-surface

boundary Γfs, and shell mid-surface Γsm considered as a crack-like boundary (Γsm =Γ+
sm+Γ−

sm).

The Singular BIE is used for collocating along the free-surface:

ci
lkui

k +
∫
Γ

t∗lkuk dΓ =
∫
Γ

u∗lktk dΓ+
∫
Ωs

u∗lkbk dΩs (1)

where l,k = 1,2,3 and the summation convention is implied. Furthermore, ci
lk is the free-term

at the collocation point, ui
k is the displacement at the collocation point, u∗lk and t∗lk are the full-

space elastodynamic fundamental solutions in terms of displacements and tractions respectively

(see e.g. [11]), and bk are the body forces acting over the domain Ωs assumed to be zero for

the present formulation. The Dual (Singular and Hypersingular) BIEs are used for collocating

along the shell mid-surface:

1

2

(
ui+

l +ui−
l

)
+

∫
Γ

t∗lkuk dΓ =
∫
Γ

u∗lktk dΓ (2)

1

2

(
t i+
l − t i−

l

)
+

∫
Γ

s∗lkuk dΓ =

∫
Γ

d∗
lktk dΓ (3)

where ui+
k , t i+

k and ui−
k , t i−

k are displacements and tractions at the collocation point on respec-

tively the positive and negative crack faces, and d∗
lk and s∗lk are obtained from the differentiation

of u∗lk and t∗lk (see e.g. [11]). In Eqs. (2-3), it is assumed that the collocation point xi is located

at a smooth boundary point (Γsm

(
xi
)
∈ C 1), which leads to the 1/2 factor. This assumption is

related to the use of Multiple Collocation Approach (MCA) [12] when collocating at a crack

boundary point. Lagrange quadratic triangular (6 nodes) and quadrilateral (9 nodes) boundary

elements are used for the discretisation. The pile shell region Ωps is discretised using the FEM.

Shell finite elements based on the degeneration from the solid are considered, and the locking-

phenomena is overcome by using the Mixed Interpolation of Tensorial Components (MITC). In
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(a) (b) (c) (d)

Figure 2: Foundation configuration and its modelling: (a) steel hollow pile in homogeneous

half-space, (b) DBEM-FEM model (soil-shell interaction), (c) Integral model (soil-beam inter-

action) and (d) Winkler model (soil-beam interaction)

particular, the MITC9 shell finite element [13] is used in this work. The equilibrium equation

for a given shell finite element l can be written as:

K̃(l)a(l)−Q(l)t(l) = f(l) (4)

where K̃(l) = K(l)−ω2M(l) is the resulting time harmonic stiffness matrix, a(l) is the vector

of nodal displacements and rotations, Q(l) is the matrix converting distributed mid-surface load

t(l) into nodal loads, and f(l) is the vector of equilibrating nodal forces. Finally, coupling is

performed by imposing compatibility and equilibrium between shell finite element and crack-

like boundary:

u+k = u−k = ul
k (5)

t+k + t−k + t l
k = 0 (6)

where ul
k denotes the shell displacements and t l

k the distributed mid-surface shell load.

The seismic excitation is included in the formulation following the classical decomposition

of the total field into the superposition of the incident field (produced by the impinging waves)

and the scattered field (produced by the presence of the foundation) [11].

3.2.2 Integral model with soil-beam interaction

With the intention of reducing the number of degrees of freedom needed to solve the soil-

foundation problem, a second numerical model [8] is considered. The main simplification

of this model with respect to the previous BEM-FEM one is the treatment of the foundation

(pile/bucket) as a beam element. By doing so, the discretisation of the soil-foundation inter-

face is avoided and the soil-foundation interaction is reduced to distributed loads qk acting over

the load line Γl that represents the foundation element. On the other hand, the integral model
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makes use of specific Green’s functions for the layered half space [14] as fundamental solutions

instead of the aforementioned ones corresponding to the full-space. This substitution avoids

the discretisation of the free-surface, as the particular Green’s functions already satisfy the zero

traction boundary condition. Fig. 2c shows how simple is the required discretisation for this

model. Thus, the Singular BIE that is used for collocating along the foundation-load line can

be reduced to:

ui
l =

∫
Γl

ũ∗lkqk dΓl (7)

where ũ∗lk is the displacement fundamental solution for the layered half space [14]. A spe-

cial non-nodal collocation strategy is required for numerically evaluating the integral of the

left-hand side (see [8] for more details). The load line Γl is discretised using the two-noded

finite elements. Cubic and quadratic shape functions that satisfy the Timoshenko’s beam static

equation [15] are used for the lateral behaviour, while linear shape functions are used to model

the interaction tractions and axial displacements. The equilibrium equation for a given beam

element l can be written as:

K̃(l)a(l)−Q(l)q(l) = f(l) (8)

being the terms of this equation the beam-counterparts of the ones presented in Eq. (4). Finally,

the coupling between the foundation and soil is made by imposing compatibility and equilib-

rium conditions between the pile nodes and the corresponding points of the soil:

uk = ul
k (9)

qk +ql
k = 0 (10)

where ul
k denotes the beam displacements and ql

k the distributed interaction traction acting over

the beam.

As in the BEM-FEM model, the seismic excitation is considered by the superposition of the

incident and scattered fields.

3.2.3 Beam-on-Dynamic-Winkler-Foundation model

In order to compare the previous models against a well-established one, a classic Beam-on-

Dynamic-Winkler-Foundation model (also known as Winkler model) is considered, see Fig. 2d.

It consists in solving the differential equation of the Euler-Bernoulli beam using a distributed

load representing the soil reaction. This is introduced as distributed springs and dashpots taken

from [9, 16]. Such Winkler model is a very practical engineering approach to the problem,

but requires the calibration of the distributed dynamic stiffnesses based on fitting of numerical

results (as in [9, 16]) or some analytical solution of simpler problems (e.g. [17]).

4 RESULTS AND DISCUSSION

First, results corresponding to the rigid base assumption are presented. Table 1 shows the

natural frequencies and the amplification ratios at hub height for the first 4 modes of the turbine-

supporting structure system. The complete harmonic response of the system is depicted by the

grey solid line in Fig. 3.

Fig. 3 also shows the harmonic response obtained by considering the different models of

the foundation: BEM-FEM (black line), integral (orange line) and Winkler (blue dashed line).
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G.M. Álamo, J.D.R. Bordón, L.A. Padrón, J.J. Aznárez and O. Maeso

mode f
rigid
n (Hz) u

rigid
max /u f f

1 0.369 22.3

2 3.33 4.26

3 7.14 2.75

4 14.5 1.18

Table 1: Natural frequencies and harmonic hub displacement under the rigid base assumption.
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Figure 3: Harmonic seismic response of the OWT. Comparison between the three foundation

models and the rigid base assumption. L/D = 6.

For all of them an aspect ratio L/D = 6 has been considered for the foundation element. The

results show a strong influence of the soil-structure interaction (SSI) effects, not only in the

shifts towards lower natural frequencies, but also in the increments of the amplification of the

soil free-field motion. Regarding the use of the different models, the BEM-FEM and integral

formulations lead to similar responses, while the results of the Winkler model slightly diverge.

The quantification of the importance of the soil-structure interaction effects and the mod-

elling of the foundation is summarized in Fig. 4. This figure displays the relation between the

soil motion amplification ratio considering or not the SSI effects, as well as the relation between

the natural frequencies obtained for the flexible and rigid base. The results of the different mod-

els are presented following the same colors as before and different aspect ratios are considered

along the different columns. Only the first three modes are studied as they are found to be the

relevant ones when the SSI effects are taken into account (see Fig. 3). As commented before,

the results obtained by the BEM-FEM and integral model present less differences than the ones

obtained by the simpler Winkler approach. The second mode is found to be the most sensitive

to the foundation model, especially in terms of the amplification ratio. Regarding the effects of

the foundation aspect ratio, as expected, larger differences between the shell and beam models

are found for the smallest L/D.

In order to understand the differences between the three models, the impedance functions

and kinematic interaction factors obtained by each of them are presented in Figs. 5 and 6,

respectively. Only the frequency range of interest is plotted.

The comparison between the BEM-FEM and integral models shows agreeing results both in

terms of impedance functions and kinematic interaction factors. Only appreciable differences

are found in the kinematic interaction factors for the configuration with L/D = 2 due to the
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Figure 4: Influence of SSI effects on the estimation of the maximum seismic response and

natural frequencies of the OWT. Comparison between the three foundation models.

inability of the beam model to reproduce the behaviour of the short foundation. For this con-

figuration, the larger input motion obtained by the integral model explains the larger response

presented in Fig. 4.

On the other hand, the Winkler model can not closely reproduce the reference results of the

BEM-FEM formulation. Large differences are found in the impedance terms involving rotations

and also in the imaginary component (i.e., foundation damping) of all impedance terms. The

discrepancies of the Winkler model become more evident for the kinematic interaction factors,

presenting larger input displacements and rotations than the reference foundation model as the

frequency increase. The combination of these two opposite effects makes that, depending on the

mode and configuration, the Winkler model leads to larger (when the increase in input motion

is more important) or smaller (when the increase in the foundation damping is more important)

amplification ratios with respect to the ones of the BEM-FEM model.

5 CONCLUSIONS

The present contribution presents a comparison between three models of different modelling

approximation levels for pile/bucket foundations under seismic excitation. The reference BEM-

FEM model considers the complete soil-shell interaction [7], while the other models (integral

model and Winkler model) consider a soil-beam interaction. The integral model [8] rigorously

incorporates the soil using a Green’s function, while the Winkler model uses a tuned distribution

of springs and dashpots from [9, 16].

In general terms, it is observed that the integral model is superior to the Winkler model,

although in some cases the discrepancies are small enough for rough and quick analyses. Sur-

prisingly, it is also observed that soil-beam models roughly reproduces the results for small

L/D.
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son between the three foundation models.
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