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Abstract
This paper is concerned with a three-dimensional time har-
monic model of open shell structures buried in poroelas-
tic soils. It combines the Dual Boundary Element Method
(DBEM) for treating the soil and shell finite elements for
modelling the structure, leading to a simple and efficient
representation of buried open shell structures. A new
fully regularised Hypersingular Boundary Integral Equa-
tion (HBIE) has been developed to this aim, which is then
used to build the pair of Dual BIEs necessary to formu-
late the DBEM for Biot poroelasticity. The new regularised
HBIE is validated against a problem with analytical solu-
tion. The model is used in a wave diffraction problem in or-
der to show its effectiveness. It offers excellent agreement
for length to thickness ratios greater than 10, and relatively
coarse meshes. The model is also applied to the calcula-
tion of impedances of bucket foundations. It is found that
all impedances except the torsional one depend consider-
ably on hydraulic conductivity within the typical frequency
range of interest of offshore wind turbines. Keywords: dual
boundary element method poroelastodynamics shells soil-
structure interaction

1 Introduction
The Finite Element Method (FEM) and the Boundary El-
ement Method (BEM) are well known numerical methods
that can handle a wide variety of problems [43, 45]. Nev-
ertheless, there are problems where neither the FEM nor
the BEM is capable of solving these in an efficient man-
ner. The main advantage of the FEM is its versatility in
handling a huge collection of problems that may include
structural members (beams, arches, plates, shells), non-
linearities, anisotropy and many other aspects. However,
when unbounded domains are present in a wave propaga-
tion problem, it requires the truncation of the volume mesh
and the presence of some absorbing boundary that help to
impose the Sommerfeld radiation condition. Although this
has been acceptably solved by Perfectly Matched Layers
[4], the BEM is more appealing as it intrinsically satis-
fies the radiation condition. In this paper, both numerical
methods are combined in order to efficiently solve three-
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dimensional Soil-Structure Interaction problems where the
soil is a Biot poroelastic medium and the structure is any
open shell structure buried in it.

A buried open shell structure is characterised by being in
contact with the same surrounding region on both faces of
the shell. On the other hand, a buried closed shell struc-
ture, such as a tunnel or a box-like structure, is in contact
with different regions on each side of the shell. In both
cases, a conventional multi-region BEM approach can be
used to deal with the soil and the structure, e.g. [27, 28],
but undoubtedly the structure would be more easily han-
dled if treated by the FEM. In the case of closed shell struc-
tures, conventional multi-region BEM coupled with shell
finite elements can be used [42]. In the case of open shell
structures, it can still be used by artificially transforming
them into closed ones. However, fictitious (nonphysical) in-
terfaces must be created, e.g. [25], unnecessarily increasing
the number of degrees of freedom. In order to obtain an effi-
cient model, we propose a BEM–FEM model where the key
idea is using the Dual BEM (DBEM) [21, 35, 39], which is
commonly used for crack analysis, to treat the soil–shell in-
terface. This methodology has recently been applied by the
authors to two-dimensional Fluid-Structure Interaction [8]
and Soil-Structure Interaction [9] problems. Therefore, the
aims of this paper are:

• Present a new analytically regularised Hypersingu-
lar Boundary Integral Equation (HBIE) for three-
dimensional Biot poroelasticity valid for curved ele-
ments. The HBIE is then used in combination with
the conventional Singular BIE (SBIE) to form the Dual
BIE (DBIE) that is used by the DBEM.

• Present the three-dimensional DBEM–FEM (soil-
shell) dynamic model for any open shell structure
surrounded by a poroelastic medium. The cases of
an elastic solid or an inviscid fluid as a surrounding
medium can be considered as particular cases of this
model.

The rest of the paper is organised as follows. In Section
2, the main aspects of the proposed DBEM–FEM model
are described. In particular, the treatment of the poroelas-
tic soil by using the Conventional and the Dual Boundary
Element Method is described through Sections 2.1, 2.2 and
2.3. Shell modelling is described in Section 2.4, and BE–
FE coupling is described in Section 2.5. Several results are
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presented in Section 3. The developed regularised HBIE
is validated in Section 3.1. In Section 3.2, a wave diffrac-
tion problem based on a vibration isolation wall is studied,
and the effectiveness of the DBEM–FEM model is anal-
ysed. Impedances of bucket foundations installed in sandy
soils are obtained and analysed in Section 3.3. Finally, con-
clusions are given in Section 4

2 Methodology

2.1 Biot poroelasticity

The theory of poroelasticity presented by Biot [6] is able
to model the propagation of waves in a two-phase medium
consisting of an isotropic elastic solid frame saturated by a
compressible viscous fluid. The governing equations in the
time domain can be written as:

µ∇2u+∇ [N (∇ ·u)+Q(∇ ·U)]+X =

ρ11ü+ρ12Ü+b
(
u̇− U̇

)
(1)

∇ [Q(∇ ·u)+R(∇ ·U)]+X′ =
ρ12ü+ρ22Ü−b

(
u̇− U̇

)
(2)

and the stress-strain relationships as:

τij = δij [(N−µ)(∇ ·u)+Q(∇ ·U)]+µ (ui,j +uj,i)
(3)

τ = Q(∇ ·u)+R(∇ ·U) (4)

where N = λ +µ+Q2/R, i, j = 1,2,3, ui and τi j are respec-
tively the displacements and stresses of the solid phase, Ui
and τ the displacements and equivalent stress of the fluid
phase, and X and X′ the body forces of solid and fluid
phases. The material properties λ and µ are the Lamé’s
parameters of the solid phase, Q and R are the Biot’s cou-
pling parameters, b is the dissipation constant, and ρ11 =
(1− φ)ρs + ρa, ρ12 = −ρa, ρ22 = φρf + ρa, being φ the
porosity, ρs the solid phase density, ρf the fluid phase den-
sity, and ρa the additional apparent density. The dissipation
constant b is related to the hydraulic conductivity k by the
relationship b = ρfgφ 2/k, where g is the gravitational ac-
celeration [10]. Assuming a time variation exp(iωt), where
ω is the circular frequency, Equations (1-2) become:

µ∇2u+∇ [N (∇ ·u)+Q(∇ ·U)]+X =

−ω2 (ρ̂11u+ ρ̂12U) (5)

∇ [Q(∇ ·u)+R(∇ ·U)]+X′=−ω2 (ρ̂12u+ ρ̂22U)
(6)

where ρ̂11 = ρ11− ib/ω , ρ̂22 = ρ22− ib/ω and ρ̂12 = ρ12+
ib/ω . From Equations (5-6), it can be obtained that three
modes of propagation exists: longitudinal modes P1 and
P2, and transverse mode S. The wavenumbers kP associated
with longitudinal modes and the wavenumber kS associated

with the transverse mode are obtained from:

kP =±

√√√√a1±
√

a2
1−4a0

2
, a0 = ω4 ρ̂11ρ̂22− ρ̂2

12
R(λ +2µ)

a1 = ω2
(

ρ̂22

R
+

ρ̂11 + ρ̂22Q2/R2− ρ̂122Q/R
λ +2µ

) (7)

and

kS =±ω

√
ρ̂11− ρ̂2

12/ρ̂22

µ
(8)

where only those with positive real part are considered. The
P wavenumber associated with the fastest wave speed is
kP1 (solid and fluid dilatation are in phase), while the P
wavenumber associated with the slowest wave speed is kP2
(solid and fluid dilatation are out of phase).

2.2 Boundary Integral Equations
The main ingredients of the BEM are the Boundary Integral
Equations (BIE), which, after a proper discretisation, are
used to build a solvable linear system of equations. In the
context of Biot poroelasticity, several BIEs have been pro-
posed [7, 14, 15, 29, 33, 34], which, among other aspects,
differ from each other in the selection of the variables. The
pore pressure p is often used instead of the fluid equiva-
lent stress (or fluid partial stress) τ , being both related by
τ =−φ p. Likewise, the specific fluid flux qi =−φ(u̇i−U̇i)
or the specific normal fluid flux qn = q jn j is often used
instead of the fluid displacements Ui or the normal dis-
placement Un = U jn j. The choice is a matter of prefer-
ence or convenience. The Singular BIE (SBIE) proposed
by Domı́nguez [15] is especially advantageous here as it
uses a reduced set of four variables (fluid normal displace-
ment Un, fluid equivalent stress τ , solid displacements uk
and solid tractions tk) that leads to simple coupling equa-
tions, see Equations (45-46). Domı́nguez [16] presented the
corresponding BEM for two-dimensional problems, while
Maeso et al. [27, 28] extended it for three-dimensional
problems. Another advantage is that, as done in [28], the
fundamental solution can be written in a way that resem-
bles the fundamental solutions of acoustics and elastody-
namics, which eases later developments by identifying sim-
ilar terms. In fact, this strategy is particularly useful in this
work for presenting a fully regularised three-dimensional
Hypersingular BIE (HBIE) and Dual BIE (DBIE) for Biot
poroelasticity valid for curved elements. The regularisa-
tion process of these is based on [17], which deals with
the elastodynamic problem. The procedure explicitly re-
duce all strongly singular and hypersingular surface inte-
grals to weakly singular surface integrals and line integrals
by making use of the Stokes’ theorem. In this sense, we
must mention the work of Messner and Schanz, who had
already presented a regularised HBIE for collocation BEM
[33] and Galerkin BEM [34] for Biot poroelasticity follow-
ing a similar philosophy.

Let Ω be a poroelastic region, and Γ = ∂Ω its boundary
with outward unit normal n. Using the weighted residual
formulation proposed by Domı́nguez [15, 28], the SBIE at
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a collocation point xi /∈ Γ can be written as:

δ i
ΩIi

Sui +
∫

Γ
T∗u dΓ =

∫
Γ

U∗t dΓ (9)

The vector u contains all the primary variables: fluid equiv-
alent stress τ and solid displacements uk; while t con-
tains all the secondary variables: fluid normal displacement
Un = U jn j and solid traction tk = τk jn j. The primary vari-
ables at the collocation point are τ i and ui

k. The scalar δ i
Ω

takes the value 1 if the collocation point is an interior point
(xi ∈Ω), whereas it is null if the collocation point is an ex-
terior point (xi /∈Ω∪Γ). The matrix Ii

S and the fundamental
solution matrices U∗ and T∗ are fully described in Appendix
A. All the integrals are regular, although nearly singular
due to the presence of terms of order O(r−p) (r = |x− xi|,
p ≤ 5). When the collocation point is a boundary point
(xi ∈ Γ), the integrals contain a singularity, and thus the in-
tegration domain is taken as the following limit:

Γ = lim
ε→0+

{
ΓR +

[(
ΓS− ei

)
+Γi

]}
(10)

where ΓS is a portion of the Γ that contains the singularity,
ΓR is the complementary part of ΓS, ei is a circular surface
of ΓS with radius ε centred at the collocation point, and Γi

is a spherical surface with radius ε centred at the colloca-
tion point. The spherical surface can be oriented to the out-
side (spherical bump) or to the inside (spherical hole) with
respect to Ω. In the former, the collocation point is an inte-
rior point, while, in the latter, it is an exterior point. After
carrying out the integration over the spherical surface, both
alternatives lead to the same SBIE:[

Jci
00 0

0 ci
lk

]
ui +

∫
ΓR

T∗u dΓ+ lim
ε→0+

∫
ΓS−ei

T∗u dΓ =∫
ΓR

U∗t dΓ+ lim
ε→0+

∫
ΓS−ei

U∗t dΓ (11)

where J = 1/(ρ̂22ω2). For a collocation point located at a
general non-smooth boundary point, the free-terms ci

00 and
ci

lk can be obtained from the closed analytical formulas pro-
vided by Mantič [30], being ci

00 the potential free-term, and
ci

lk the elastostatic free-term with drained properties. The
integrals over ΓR are regular. The integrals over ΓS− ei are
at most weakly singular, except an integral associated with
t∗lk that is strongly singular. The fundamental solution t∗lk can
be decomposed in such a way that the term that leads to the
strongly singular integral is isolated from the rest:

t∗lk = t∗(W)
lk +

µ̃
4π

r,lnk− r,knl

r2 = t∗(W)
lk + t∗(S)lk (12)

where µ̃ = µ/(λ +2µ). Thus, by using Equation (B.2) and
the Stokes’ theorem, the strongly singular surface integral is
turned into a weakly singular surface integral and a nearly
singular line integral over ΛS = ∂ΓS:

H(S)
l =

µ̃
4π

[
lim

ε→0+

∫
ΓS−ei

r,lnk− r,knl

r2

(
uk−ui

k

)
dΓ +(

εlkj

∫
ΛS

e j · t
r

dΛ
)

ui
k

]
(13)

where εlkj is the Levi-Civita symbol, e j is the unit vector
along x j axis, and t is the unit tangent vector at the obser-
vation point. Finally, the regularised SBIE for a boundary
collocation point can be written as:

Ciui+
∫

ΓR
T∗u dΓ+ lim

ε→0+

∫
ΓS−ei

T∗(W)u dΓ+
{

0
H(S)

l

}
=∫

ΓR
U∗t dΓ+ lim

ε→0+

∫
ΓS−ei

U∗t dΓ (14)

The HBIE is built by establishing the secondary variables
at the collocation point:

U i
n =U i

jn
i
j =−Jτ i

, jn
i
j−Zui

jn
i
j (15)

t i
l = τ i

l jn
i
j =
[
λui

m,mδlj +µ
(

ui
l, j +ui

j,l

)]
ni

j +
Q
R

τ ini
l

(16)

where Z = ρ̂12/ρ̂22, ni is the unit normal vector at the col-
location point, and the comma derivative notation denotes
∂/∂xi

k. Hence, Equations (15-16) require a combination of
the SBIE and its derivatives with respect to the coordinates
of the collocation point. This fact imposes that the primary
variables at the collocation point must have continuous first
derivatives, i.e. τ(xi),uk(xi)∈C 1. After carrying out all the
required operations, the HBIE at a collocation point xi /∈ Γ
can be written as:

δ i
ΩIi

Hti +
∫

Γ
S∗u dΓ =

∫
Γ

D∗t dΓ (17)

where the matrix Ii
H and the fundamental solution matri-

ces D∗ and S∗ are fully written in Appendix A. As with the
SBIE, all the integrals are regular in these cases, although
the nearly singular terms have higher degrees of singularity
(p ≤ 7). When the collocation point is a boundary point, it
is again necessary to take the integration domain presented
in Equation (10). The case of a geometrically smooth bo-
undary point is considered here, i.e. ei is a circle and Γi a
hemisphere, although non-smooth points could be consid-
ered at a considerably greater analytical cost [31]. Given
that τ(xi),uk(xi) ∈ C 1, the primary variables admit the ex-
pansion:

τ = τ i + τ i
, jr j +O

(
r2) (18)

uk = ui
k +ui

k, jr j +O
(
r2) (19)

where τ i
, j and ui

k, j are derivatives of their superficial distri-
bution over Γ. Once the integrals over Γi are solved using
this expansion and substituted back into Equation (17), the
HBIE apparently turns to be unbounded:

1
2

Ii
Hti +

∫
ΓR

S∗u dΓ+ lim
ε→0+

∫
ΓS−ei

S∗u dΓ+

MΓi
u
(

lim
ε→0+

1
ε

)
=
∫

ΓR
D∗t dΓ+ lim

ε→0+

∫
ΓS−ei

D∗t dΓ

(20)

where:

MΓi
=

 J
2

0

0 − µ̃
4
[
(3λ +4µ)δlk +λni

ln
i
k

]
 (21)

3



The integral over ΓS − ei in the right hand side of Equa-
tion (20) is essentially similar to that of the left hand side
of Equation (11). The term of d∗lk leading to the strongly
singular integral can be treated in a similar way:

d∗lk = d∗(W)
lk +

µ̃
4π

µ
λ +2µ

r,lni
k− r,kni

l
r2 = d∗(W)

lk +d∗(S)lk (22)

where the regularised integral associated with d∗(S)lk is:

L(S)
l =

µ̃
4π

[
lim

ε→0+

∫
ΓS−ei

r,l(ni
k−nk)− r,k(ni

l−nl)

r2 tk dΓ+

lim
ε→0+

∫
ΓS−ei

r,lnk− r,knl

r2

(
tk− t i

k

)
dΓ+(

εlkj

∫
ΛS

e j · t
r

dΛ
)

t i
k

]
(23)

The integral over ΓS−ei associated with S∗ in Equation (20)
is much more complicated. The integrals associated with
s∗00 and s∗lk are hypersingular, while the integrals associated
with s∗0k and s∗l0 are strongly singular. For the latter integrals,
s∗0k and s∗l0 can be split up into a term leading to weakly
singular integrals at most, and a term leading to strongly
singular integrals:

s∗0k = s∗(W)
0k +

µ̃
4π

Q
R

r,k
(
n ·ni

)
r2 = s∗(W)

0k + s∗(S)0k (24)

s∗l0 = s∗(W)
l0 − µ̃

4π
Q
R

r,l
(
n ·ni

)
r2 = s∗(W)

l0 + s∗(S)l0 (25)

The integrals associated with s∗(S)0k and s∗(S)l0 are both similar
in nature, and can be regularised by using Equation (B.3)
and the Stokes’ theorem:

M(S)
0 =

µ̃
4π

Q
R

[
lim

ε→0+

∫
ΓS−ei

r,k
(
n ·ni

)
r2

(
uk−ui

k

)
dΓ+(

− lim
ε→0+

∫
ΓS−ei

nk

r2
∂ r
∂ni dΓ+

∫
ΛS

(
ek×ni

)
· t

r
dΛ

)
ui

k

]
(26)

M(S)
l =− µ̃

4π
Q
R

[
lim

ε→0+

∫
ΓS−ei

r,l
(
n ·ni

)
r2

(
τ− τ i

)
dΓ+(

− lim
ε→0+

∫
ΓS−ei

nl

r2
∂ r
∂ni dΓ+

∫
ΛS

(
el×ni

)
· t

r
dΛ

)
τ i

]
(27)

The hypersingular integrals associated with s∗00 and s∗lk can
be treated in a similar way. The fundamental solution s∗00
can be split up in order to isolate the term leading to the
hypersingular integral:

s∗00 = s∗(W)
00 +

J
4π

n ·ni

r3 = s∗(W)
00 + s∗(H)

00 (28)

The hypersingular integral associated with s∗(H)
00 can be reg-

ularised by using Equations (18), (B.1) and (B.3), and the

Stokes’ theorem:

M(H)
0 =

J
4π

[
lim

ε→0+

∫
ΓS−ei

n ·ni

r3

(
τ− τ i− τ i

, jr j

)
dΓ+(

− lim
ε→0+

∫
ΓS−ei

3
r3

∂ r
∂n

∂ r
∂ni dΓ+

∫
ΛS

(
r×ni

)
· t

r3 dΛ

)
τ i+(

− lim
ε→0+

∫
ΓS−ei

n j

r2
∂ r
∂ni dΓ+

∫
ΛS

(
e j×ni

)
· t

r
dΛ

)
τ i
, j

]
+

J
2

τ i
(

lim
ε→0+

1
ε

)
= M(Hb)

0 +
J
2

τ i
(

lim
ε→0+

1
ε

)
(29)

In order to treat the integral associated with s∗lk, it is split up
into three parts: a part leading to weakly singular integrals
at most, a part leading to a hypersingular integral basically
similar to Equation (29), and a part leading to a much more
involved hypersingular integral:

s∗lk = s∗(W)
lk +s∗(H1)

lk +s∗(H2)
lk = s∗(W)

lk +
µ
4π

2µ̃δlk
n ·ni

r3 +

µ
4π

[
3λ̃

(
r,lni

k
r3

∂ r
∂n
− r,knl

r3
∂ r
∂ni +

r,lr,k
(
n ·ni

)
r3

)
+

6µ̃
(

r,kni
l

r3
∂ r
∂n
− r,lnk

r3
∂ r
∂ni

)
+2µ̃

nlni
k

r3 +2
(

λ̃ − µ̃
) nkni

l
r3

]
(30)

where λ̃ = λ/(λ +2µ). The regularisation of the hypersin-
gular integral associated with s∗(H1)

lk gives:

M(H1)
l =

µ
4π

2µ̃δlk

[
lim

ε→0+

∫
ΓS−ei

n ·ni

r3

(
uk−ui

k−ui
k, jr j

)
dΓ+(

− lim
ε→0+

∫
ΓS−ei

3
r3

∂ r
∂n

∂ r
∂ni dΓ+

∫
ΛS

(
r×ni

)
· t

r3 dΛ

)
ui

k+(
− lim

ε→0+

∫
ΓS−ei

n j

r2
∂ r
∂ni dΓ+

∫
ΛS

(
e j×ni

)
· t

r
dΛ

)
ui

k, j

]
+

µµ̃δlkui
k

(
lim

ε→0+

1
ε

)
= M(H1b)

l +µµ̃δlkui
k

(
lim

ε→0+

1
ε

)
(31)

The regularisation process of the hypersingular integral as-
sociated with s∗(H2)

lk starts by using the expansion of uk
given in Equation (19):

M(H2)
l = lim

ε→0+

∫
ΓS−ei

s∗(H2)
lk

(
uk−ui

k−ui
k, jr j

)
dΓ+(

lim
ε→0+

∫
ΓS−ei

s∗(H2)
lk dΓ

)
ui

k+

(
lim

ε→0+

∫
ΓS−ei

r js
∗(H2)
lk dΓ

)
ui

k, j

= M(H21)
l +M(H22)

l +M(H23)
l (32)

where the integral M(H21)
l is weakly singular, M(H22)

l is hy-

persingular, and M(H23)
l is strongly singular. The hyper-

singular integral M(H22)
l is regularised by using Equations
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(B.4) and (B.5), and the Stokes’ theorem, which gives:

M(H22)
l =

µ
4π

{
lim

ε→0+

∫
ΓS−ei

[
3λ̃

r,k
r3

(
ni

l
∂ r
∂n
−nl

∂ r
∂ni

)
+

6µ̃
r,l
r3

(
ni

k
∂ r
∂n
−nk

∂ r
∂ni

)
−15λ̃

r,lr,k
r3

∂ r
∂n

∂ r
∂ni

]
dΓ+

3λ̃
∫

ΛS

r,lr,k
(
r×ni

)
· t

r3 dΛ+2µ̃ni
k

∫
ΛS

(r× el) · t
r3 dΛ+

2
(

λ̃ − µ̃
)

ni
l

∫
ΛS

(r× ek) · t
r3 dΛ

}
ui

k+

µ̃λ
4

(
3δlk +ni

ln
i
k

)
ui

k

(
lim

ε→0+

1
ε

)
=

M(H22b)
l +

µ̃λ
4

(
3δlk +ni

ln
i
k

)
ui

k

(
lim

ε→0+

1
ε

)
(33)

The strongly singular integral M(H23)
l is regularised by using

Equation (B.6), then adding and subtracting respectively
ni

l

(
n ·ni

)
and ni

k

(
n ·ni

)
from some of the nl and nk terms,

and eventually using Equation (B.3) and the Stokes’ theo-
rem:

M(H23)
l =

µ
4π

{
lim

ε→0+

∫
ΓS−ei

[
3λ̃ r, j

(
r,lni

k
r2

∂ r
∂n
− r,knl

r2
∂ r
∂ni

)
+

6µ̃r, j

(
r,kni

l
r2

∂ r
∂n
− r,lnk

r2
∂ r
∂ni

)
− λ̃

r, jr,lnk

r2
∂ r
∂ni+

λ̃

(
r, jni

l− r,lni
j

)(
nk−ni

k

(
n ·ni

))
r2 +2µ̃r, j

nlni
k−nkni

l
r2 −

λ̃
((

δlk +ni
ln

i
k

)
n j +

(
δjk−ni

jn
i
k

)
nl

) 1
r2

∂ r
∂ni

]
dΓ+

λ̃

[(
δlk +ni

ln
i
k

)∫
ΛS

(
e j×ni

)
· t

r
dΛ+

(
δjk−ni

jn
i
k

)∫
ΛS

(
el×ni

)
· t

r
dΛ+

∫
ΛS

r,lr, j
(
ek×ni

)
· t

r
dΛ

]}
ui

k, j (34)

After developing the integrals over ΓS−ei of Equation (20)
throughout Equations (22-34), these can be substituted back
into Equation (20) to obtain a fully regularised HBIE:

1
2

Ii
Hti +

∫
ΓR

So ∗u dΓ+ lim
ε→0+

∫
ΓS−ei

S∗(W)u dΓ+{
−M(S)

0 −M(Hb)
0

M(H1b)
l +M(H22b)

l +M(H23)
l

}
=

∫
ΓR

D∗t dΓ+ lim
ε→0+

∫
ΓS−ei

D∗(W)t dΓ+

{
0

L(S)
l

}
(35)

due to the cancellation of all unbounded terms appearing
in Equations (29), (31) and (33) with the unbounded term
appearing in Equation (20).

The SBIE and HBIE presented respectively in Equations
(14) and (35) correspond to collocation points located at or-
dinary boundaries, with the condition that Γ(xi) ∈ C 1 and

ui ∈ C 1 for the HBIE. When the collocation point is lo-
cated at a crack-like boundary, both BIEs have to be ac-
cordingly modified, but the main issues have already been
solved. A crack-like boundary is composed by two ordinary
sub-boundaries geometrically coincident but with opposite
orientations, denoted as positive + and negative − faces.
Taking into account this, the SBIE and HBIE for a given
crack-like boundary collocation point xi can be written as:

1
2

Ii
S

(
ui++ui−

)
+−
∫

Γ
T∗u dΓ =

∫
Γ

U∗t dΓ (36)

1
2

Ii
H

(
ti+− ti−

)
+=
∫

Γ
S∗u dΓ =−

∫
Γ

D∗t dΓ (37)

where it has been assumed that Γ(xi) ∈ C 1, and the Cauchy
Principal Value (CPV) (−

∫
) and Hadamard Finite Part (HFP)

(=
∫

) notations are used. Although the CPV and HFP con-
cepts are the underlying abstractions behind the regularisa-
tion, they have not been used since the presented approach
deals explicitly with the singularities and thus directly gives
the finite parts. However, these concepts are used in Equa-
tions (36) and (37) for the sake of brevity. Both Equations
(36) and (37) have to be used simultaneously in order to
solve problems with crack-like boundaries. They are best
known as Dual BIEs [21], and their application to the BEM
is called the Dual BEM [35, 39].

2.3 Boundary Element Method

In this section, the relevant aspects of the implementation
of the BEM used in this work are briefly described. The
discretisation is performed using classical continuous iso-
parametric Lagrange elements. Two classes of boundary
elements are considered: ordinary (or conventional) and
crack-like. In order to build up a solvable linear system
of equations, an appropriate collocation of Boundary Inte-
gral Equations (14) and/or (35) is done throughout ordinary
boundary elements, whereas the collocation of Dual Boun-
dary Integral Equations (36) and (37) is done throughout
crack-like boundary elements.

Hypersingular Boundary Integral Equations (35) and (37)
impose one important restriction on the choice of elements
for the discretisation: the collocation point must be in a
point where the primary variables are differentiable, i.e.
u(xi) ∈ C 1. A typical solution used in crack analysis is to
make use of discontinuous elements [35, 39], where nodes
are located inside the elements and hence nodal collocation
meets automatically this requirement. However, the usage
of continuous boundary elements is more appropriate in this
work for two reasons: they can be directly and efficiently
coupled to most classical shell finite elements, and the con-
tinuity requirement can be avoided by using the Multiple
Collocation Approach (MCA) [3, 17, 19].

Consider a node κ shared by N continuous boundary el-
ements. For a given boundary element e, the node κ has
the local index k. MCA consists in building a BIE asso-
ciated with κ by adding several BIEs, one BIE per each
element e containing the node with a collocation point xi

located towards inside the element at a local coordinate ξi
k.

The local coordinate ξi
k of the interior collocation point can

be controlled by the dimensionless displacement parameter
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δ ∈ (0,1), which allows calculating xi as:

xi = xi(ξi
k) for

� elements: ξi
k = (1−δ )ξk

4 elements: ξi
k = (1−δ )ξk +

δ
3

(38)

where ξk is the local coordinate of the node k of the element.
Therefore, the BIE for the node κ is obtained from:

BIEκ =
e=N

∑
e=1

BIEe
k

(
xi(ξi

k)
)

(39)

For crack-like boundary elements, where MCA is applied
on every node, appropriate values of δ are those that pro-
duce collocation points located near Gaussian points (δ =
0.42 for linear elements and δ = 0.23 for quadratic ele-
ments). This is often used in the literature related to dis-
continuous and semi-discontinuous elements [32, 43], and
also leads to satisfactory results in this case [3].

MCA can also be used to solve the indeterminacy present
when using multiple nodes, being only used at those nodes.
Appropriate values of δ in this case are not that clear. If δ is
relatively big, e.g. δ = 0.3, then the indeterminacy problem
is clearly solved, but the continuity of the primary variable
across the multiple nodes is compromised. On the other
hand, if δ is relatively small, e.g. δ = 0.001, the primary
variable is nearly continuous, but the condition number of
the resulting linear system of equations could become too
big, and also numerical integration issues could appear due
to highly quasi-singular integrals. For those reasons, an in-
termediate value of δ = 0.05 is considered in this work.

2.4 Shell structure
The shell structure is modelled using shell finite elements
based on the degenerated solid approach [1]. These classi-
cal shell elements are versatile and relatively easy to handle.
Their major drawback is the presence of shear and mem-
brane locking, which are due to the inability of the displace-
ment interpolation to represent thin shell (vanishing out-of-
plane shear stresses in bending) and curved shell (vanish-
ing in-plane stresses in inextensional bending) situations,
respectively. Locking can be improved by using selective
or reduced integration [38, 40]. However, the resulting ele-
ments contain spurious zero-energy (hourglass) modes and
hence are not reliable [36]. There are several approaches to
obtain elements free from locking and spurious modes [44].
In this work, the family of Mixed Interpolation of Tensorial
Components (MITC) shell elements [5, 11, 18, 24] devel-
oped by Bathe and co-workers is chosen because of its ro-
bustness and predictive capability. The approach consists in
using covariant strains rather than local or global Cartesian
strains, and different interpolation schemes for each strain
component. The MITC9 shell element [11] is used in the
present paper.

The equilibrium equation of an element e can be written
as:

K̃(e)a(e)−Q(e)t(e) = q(e) (40)

where K̃(e) = K(e)−ω2M(e) is the stiffness matrix for time
harmonic analysis, Q(e) is the distributed mid-surface load

matrix and q(e) is the vector of equilibrating nodal forces
and moments. The vector of element Degrees Of Freedom
(DOF) a(e) is composed of vectors of nodal DOF:

a(e) =
(

a(e)1 . . . a(e)p . . . a(e)N

)T
(41)

where N is the number of nodes of the shell finite element.
Each node p has three DOF associated with the displace-
ment of the mid-surface, and two local or three global rota-
tions of the cross-section:

5 DOF node: a(e)p =
(

u(e)1p u(e)2p u(e)3p α(e)
p β (e)

p

)T

(42)

6 DOF node: a(e)p =
(

u(e)1p u(e)2p u(e)3p θ (e)
1p θ (e)

2p θ (e)
3p

)T

(43)

For efficiency reasons, nodes with 5 DOF are used by de-
fault. Nodes with 6 DOF are used only when strictly re-
quired, e.g. folded shells, or when they facilitate the appli-
cation of boundary conditions, e.g. symmetry conditions.
The vector of nodal values of the distributed mid-surface
load t(e) can be written as:

t(e)=
(

t(e)1 . . . t(e)p . . . t(e)N

)T
, t(e)p =

(
t(e)1p t(e)2p t(e)3p

)T

(44)

where t(e)p is expressed in global coordinates.

2.5 BE–FE coupling
The main hypothesis of the presented model over the reality
is to assume that the interaction is established between the
mid-surface of the shell structure and the soil–shell bound-
aries idealised as a crack-like boundary. Figure 1 illustrates
this hypothesis by using a straight wall buried in a half-
space. From the point of view of the soil, the shell structure
is geometrically seen as a null thickness inclusion. From
the point of view of the shell, the soil interacts on its mid-
surface. Therefore, it leads to two approximations:

• Wave diffraction is produced over the mid-surface of
the shell structure rather than over its real boundaries,
i.e. top-surface, bottom-surface, and edges are ig-
nored. This approximation gets worse as thickness in-
creases, being more pronounced near the shell edges,
and also depends on the frequency [8, 41].

• Stiffness and inertia are overestimated by the model
if real elastic modulus and densities are used for the
shell and the soil. This can be observed on the right
part of Figure 1, where the shell region overlaps the
soil added when assuming a crack-like boundary. An
analogous phenomenon occurs in other soil-structure
models, particularly in pile-soil interaction [23, 37].
Some authors propose using corrected properties for
the structure (ρ̃structure = ρstructure − ρsoil, Ẽstructure =
Estructure−Esoil) in order to compensate for them. Ex-
cept where noted, the examples shown in this paper do
not use corrected properties because little differences
have been observed for these.
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Figure 1: Main hypothesis of the DBEM–FEM model. Top:
real interaction between real boundaries. Bottom: assumed
interaction between a crack-like boundary in the soil and
the mid-surface of the shell.
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n , u−k , τ−, t−kus
k, ρs

r , ts
k

crack BE (+ face)

crack BE (− face)
shell FE (mid-surface)

n+

n−

Figure 2: Exploded view of the BE–FE coupling

A direct BE–FE coupling after discretisation is perfor-
med, where both crack boundary element mesh and shell fi-
nite element mesh must be conforming, see Figure 2. Thus,
there are three nodes at a given nodal position: a BE node
related to the positive face of the soil, a BE node related
to the negative face of the soil, and a FE node related to
the shell. Let n+k , U+

n , u+k , τ+ and t+k be respectively the
unit normal, fluid normal displacement, solid displacement,
fluid equivalent stress and solid traction of the BE node re-
lated to the positive face of the soil. Similarly, negative su-
perscripts indicate variables on the negative face. The dis-
placement of the shell mid-surface is denoted as us

k, and the
distributed mid-surface load as ts

k . Although other contact
conditions may be considered, in the following it is assumed
that the shell mid-surface and the soil crack-like boundary
are in perfectly welded and impermeable contact. There-
fore, compatibility and equilibrium coupling conditions can
be written as:

Compatibility:

{
u+k = us

k, u−k = us
k

U+
n = us

jn
+
j , U−n = us

jn
−
j

(45)

Equilibrium: τ+n+k + t+k + τ−n−k + t−k + ts
k = 0 (46)

These coupling conditions are coherent with the location of
all variables involved along the interfaces, except shell ro-
tations, which are not present as degrees of freedom along
the soil boundary. It means that there is not a complete
displacement coupling because displacement continuity is
only guaranteed at nodes. Also, tangential loads acting
along the top- and bottom-surfaces of the shell that pro-
duce distributed bending moments are completely ignored.
Both deficiencies, however, have little significance in most
applications. Given that shell structures are almost always
stiffer than soils, and the discretisation must be conform-
ing, the size of shell elements are likely to be smaller than
required by the elements-per-wavelength criterion, and thus
the first deficiency is automatically alleviated. Because of
the way most buried shell structures are loaded, the sec-
ond deficiency is unlikely to be appreciable except for thick
shells.

The proposed DBEM–FEM model has several advan-
tages over other purely continuum or mixed continuum -

7



structural models, which can be grouped into two cate-
gories:

Methodological advantages It combines the well known
ability of the BEM to deal with wave propagation phenom-
ena in soils with the natural way shell structures are treated
by the FEM. Since the shape and thickness of shell finite
elements are considered independently, there is no need to
define a fully detailed volume geometry. Consequently, the
same surface mesh of shell finite elements can be used for
studying shell structures of different thicknesses. Likewise,
since the soil-shell interface is located at the shell mid-
surface due to the use of the DBEM, a surface mesh of
crack boundary elements conforming to the shell finite ele-
ment mesh is all that is needed to model the soil in contact
with the structure. Therefore, these simple surface meshes
are able to represent the buried open shell structure, being
furthermore thickness-independent.

Computational advantages Although it is difficult to
quantify the computational advantage of this model because
it depends on its implementation and the particular problem
at hand, some comparative facts can be given:

• When compared to a multi-region BEM model (see
e.g. [27, 28]) using the same element sizes, the number
of degrees of freedom per shell node is reduced from
14 to 13 (−7%).

• A reduction in the number of degrees of freedom is au-
tomatically achieved since the edges of the shell struc-
ture are not discretised, and its thickness does not in-
fluence the mesh generation.

• The proposed model avoids common issues related
to the BEM when dealing with thin geometries, i.e.
quasi-singular integration and bad conditioning issues.
Both issues are often alleviated by performing the inte-
grals with a higher number of integration points and/or
decreasing the element sizes, consequently increasing
computational costs.

• When compared to a conventional multi-region BEM-
FEM model applied to open shell structures (see e.g.
[25]), there is no need to create fictitious interfaces that
produce superfluous degrees of freedom.

• The main disadvantage of this model is the need of a
regularised HBIE for the surrounding medium, which
has to be obtained, and is computationally costlier
than the SBIE. For homogeneous media, this is com-
monly affordable, but for inhomogeneous (layered,
anisotropic, etcetera) media this could be a formidable
task.

Regarding the quantification of the computational advan-
tage, a first look is given in Section 3.2, where the pro-
posed DBEM–FEM model and a multi-region BEM model
[27, 28] are compared. It is observed that a relevant compu-
tation time reduction is achieved mainly due to the decrease
of the number of degrees of freedom.

3 Results and discussion

3.1 Validation of the regularised HBIE
In this section, the presented regularised HBIE is validated.
For this purpose, the problem of a spherical cavity of radius
Rs in a poroelastic full-space and under harmonic radial ex-
citation is considered. This problem has analytical solution,
and its curved geometry allows to test all the terms involved
in the Boundary Integral Equations.

The analytical solution is obtained by applying the Helm-
holtz decomposition to the radial displacements after ex-
pressing Equations (5) and (6) in spherical coordinates.
Taking into account that only outgoing P1 and P2 waves
exist in this problem, solid and fluid displacements in the
radial direction can be written as:

ur (r) =−
j=2

∑
j=1

D j

(
ikP j +

1
r

)
e−ikP jr

r
ϕf j (47)

Ur (r) =−
j=2

∑
j=1

(
ikP j +

1
r

)
e−ikP jr

r
ϕf j (48)

where D j = ϕs j/ϕf j = −(ω2ρ̂22−Rk2
P j)/(ω

2ρ̂12−Qk2
P j),

and ϕs j and ϕf j are amplitudes of solid and fluid displace-
ment potentials. Solid stress in the radial direction and fluid
equivalent stress can be expressed as:

τr(r) =
j=2

∑
j=1

[
4µD j

r

(
ikP j +

1
r

)
− (D jλu +Q)k2

P j

]
e−ikP jr

r
ϕf j

(49)

τ(r) =−
j=2

∑
j=1

(QD j +R)k2
P j

e−ikP jr

r
ϕf j (50)

where λu = N + µ . The amplitudes ϕf j are obtained from
the linear system of equations formed by the boundary
conditions at r = Rs. The results presented in this paper
correspond to the following two sets of boundary condi-
tions: τr(Rs) = P and τ(Rs) = 0 (permeable cavity), and
σr(Rs) = τr(Rs)+ τ(Rs) = P and Ur(Rs) = ur(Rs) (imper-
meable cavity).

The problem is solved for a spherical cavity of radius
Rs = 1 m, and the following properties of the poroelas-
tic medium (Berea Sandstone [16]): ρf = 1000 kg/m3,
ρs = 2800 kg/m3, ρa = 150 kg/m3, λ = 4 GPa, µ = 6
GPa, φ = 0.19, R = 0.444 GPa, Q = 1.399 GPa and b =
0.19 · 109 N · s/m4. In order to present the results in a di-
mensionless fashion, dimensionless frequency a0 =ωRs/cu

P
is used, where cu

P =
√

λu/(φρf +(1−φ)ρs) is the undrai-
ned P wave propagation speed. Likewise, the quasi-static
solid radial displacement u0

r = limω→0 ur is used to nor-
malise the displacements.

BEM numerical solutions are obtained by collocating the
BIE (SBIE or HBIE) using the MCA with δ = 0.23. Only
one-octant of the spherical cavity is discretised, and sym-
metry conditions with respect to the xy, yz and zx planes are
enforced by the classical mirroring approach. Five isopa-
rametric meshes of quadratic triangular elements are con-
sidered, including a crude mesh of only 1 element. This
is a demanding set of meshes from the point of view of
testing the BEM formulation for general curved elements.
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Figure 3: Comparison between analytical and BEM numer-
ical solutions

Mesh 1 2 3 4 5
Nelements 1 4 16 64 256
h [m] 1.41 0.77 0.39 0.20 0.10
EG 2.3E-2 2.2E-3 1.6E-4 1.0E-5 1.2E-6
Ẽ (p, SBIE) 1.3E-1 8.7E-3 2.7E-4 1.1E-5 4.8E-7
Ẽ (p, HBIE) 7.9E-2 7.6E-3 4.0E-4 2.2E-5 1.2E-6
Ẽ (i, SBIE) 1.3E-1 8.5E-3 2.6E-4 1.0E-5 4.4E-7
Ẽ (i, HBIE) 8.1E-2 7.4E-3 3.0E-4 1.2E-5 3.7E-7
eocG N/A 3.73 4.06 4.01 4.03
ẽoc (p, SBIE) N/A 3.76 5.00 4.89 4.48
ẽoc (p, HBIE) N/A 3.63 4.14 4.12 4.23
ẽoc (i, SBIE) N/A 3.76 5.04 4.88 4.53
ẽoc (i, HBIE) N/A 3.66 4.71 4.94 5.09

Table 1: Convergence of the BEM numerical solution for
permeable (p) and impermeable (i) boundary conditions.

Since the solution is one-dimensional in the radial direc-
tion, i.e. radial displacements and stresses are constant over
the cavity’s surface, numerical errors are mainly due to the
geometric discretisation error. The average geometric dis-
cretisation error EG for a spherical surface can be defined
as:

EG =

∫
Amesh
|xmesh−xsurface|/Rs dA

πR2
s/2

(51)

where xsurface is the nearest point of the spherical surface to
a point of the mesh xmesh.

Figure 3 shows analytical and BEM numerical solutions
using the crude mesh, for the frequency range a0 = (0,16]
and both sets of boundary conditions. Figures 4 and 5 show
BEM numerical errors and orders of convergence . BEM
numerical results are shown as average absolute errors:

E =

∫
Amesh
|u(numerical)

r −ur|/|u0
r | dA

πR2
s/2

(52)

The experimental order of convergence eoc between results
obtained from two different meshes i and j is defined as:

eoc = log(E(i)/E( j))/ log(h(i)/h( j)) (53)

where h denotes element size, and mesh j is finer than i.
Table 1 shows a summary of mesh data and results, where

Neumann: |ur |/|u0
r |Dirichlet: |Ur |/|U0

r |

a0

N
or

m
al

is
ed

di
sp

la
ce

m
en

t

1614121086420

4

3

2

1

0

Figure 6: Analytical solution of a sphere with Dirichlet B.C.
(τr(Rs) = 0, ur(Rs) = U) and Neumann B.C. (Ur(Rs) = U ,
τr(Rs) = 0)

frequency-averaged errors and experimental orders of con-
vergence are denoted respectively as Ẽ and ẽoc. These
averaged values are computed from the frequency range
(0,π/h], i.e. the range where there are at least two elements
per wavelength.

Results show that the SBIE and the HBIE behave hand in
hand regarding the error levels for all meshes and frequen-
cies. Convergence of the BEM using both the SBIE and
the HBIE is demonstrated since E reduces in the same way
as EG does for each mesh, and within the whole frequency
range. The expected order of convergence for quadratic el-
ements is 3. However, the observed eoc within the relevant
frequency range varies around 4, being very similar to the
order of convergence of the geometric discretisation eocG.

When observing the obtained experimental orders of con-
vergence, it is possible to distinguish three zones within the
frequency range. For frequencies where there are less than
two elements per wavelength, eoc is highly oscillatory. For
frequencies where there are between two and approximately
four elements per wavelength, eoc is higher than expected.
And finally, for frequencies where there are more than ap-
proximately four elements per wavelength, eoc smoothly
varies around eocG.

Regarding the BEM numerical errors, several peaks are
observed at different frequencies for the SBIE and HBIE.
They are related to the ill-conditioning of the exterior prob-
lem (spherical cavity) near the natural frequencies of an in-
terior problem (sphere), see e.g. [13]. These natural fre-
quencies correspond to the sphere with Dirichlet boundary
conditions (τr(Rs) and ur(Rs) prescribed) for the spherical
cavity solved using the SBIE, and to the sphere with Neu-
mann boundary conditions (Ur(Rs) and τr(Rs) prescribed)
for the spherical cavity solved using the HBIE. Figure 6
shows the analytical solution of the Dirichlet and Neumann
interior problems, and the observed natural frequencies are
indicated by vertical dashed lines. For comparison pur-
poses, they are also indicated in the bottom error graphs
in Figures 4 and 5.

3.2 Application to a wave diffraction prob-
lem

In this section, the presented DBEM–FEM dynamic model
is used in a wave diffraction problem, and compared against
a multi-region BEM model [27, 28]. A curved vibration
isolation wall buried in a poroelastic half-space under a
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Figure 4: Validation of the regularised HBIE. Spherical cavity with τr(Rs) = P and τ(Rs) = 0 (permeable).

Rayleigh wave field is considered. The wall has a ra-
dius of 6 m, a depth of H = 4 m, covers an angle of
90°, and different thicknesses t = {0.80,0.40,0.08,0.04}
m are studied. Thus, slendernesses ranging from H/t = 5
to H/t = 100 are analysed. The wall is considered to be
made of concrete with density ρ = 2400 kg/m3, shear mod-
ulus µ = 6.5 GPa, Poisson’s ratio ν = 0.15, and hysteretic
damping ratio ξ = 0.05, where the complex shear modu-
lus used is µ∗ = (1 + i2ξ )µ . The poroelastic half-space
has the following properties taken from Kassir et al. [22]:
ρf = 1000 kg/m3, ρs = 1425 kg/m3, λ = µ = 32.18 MPa,
φ = 0.35, ρa = 0 kg/m3, R = 248 MPa, Q = 461 MPa,
b= 1.1986 ·107 N · s/m4; and the free-surface is permeable,
i.e. τ = tk = 0 at z = 0. As a source of vibrations, an inci-
dent Rayleigh wave field [9] with unitary vertical displace-
ments is impinging along the x-axis at f = 50 Hz. Since the
zx-plane is a symmetry plane, only one-half of the domain
is discretised and appropriate symmetry conditions are thus
enforced.

Figure 7 shows an example of multi-region BEM and
DBEM–FEM meshes, where it can be observed the sim-
plicity of the latter. At the wall, there are two conforming
meshes in the DBEM–FEM model: a BE mesh with crack
boundary elements representing the soil-wall interface, and
a FE mesh with shell finite elements representing the wall.
For each thickness, the multi-region BEM model requires
a new discretisation, while the DBEM-FEM model only
requires changing the shell thicknesses. The multi-region
BEM model requires some control of the element size with

respect to the thickness in order to avoid integration and
conditioning problems. Also, due to the presence of the
geometrical details of the wall, more degrees of freedom
are required for the wall edges and the free-surface near the
wall, especially for small thicknesses. Since the DBEM–
FEM model does not require different meshes for different
wall thicknesses, they can be changed without needing to
build the whole linear system of equations for each case,
but only the stiffness and mass matrices.

Figures 8 and 9 show respectively far-field and near-field
results for all thicknesses, which are arranged in columns.
Figure 8 shows Amplitude Reduction ratios in x and z direc-
tions (AR j = abs(u j/uincident

j )) along the x-axis for y = z =
0. Figure 9 shows displacements, fluid equivalent stress and
tractions along the depth of the outer face of the wall, i.e.
along the z-axis for y = 0 and x = t/2 (multi-region BEM)
and x = 0+ (DBEM–FEM).

Multi-region BEM meshes are similar to that shown in
Figure 7, where a mesh of 11× 11, 8× 8, 8× 8 and 8× 8
nine-node quadrilateral boundary elements are used for the
faces of the wall with respectively t = 0.04, 0.08, 0.4 and
0.8 m. The criteria to mesh the wall and its surroundings
have been: a) at least six elements per wavelength, and b)
elements of lengths up to ten times the wall thickness. Two
DBEM–FEM meshes are considered: (1) soil and wall dis-
cretised with a mesh of 8×8 nine-node quadrilateral crack
boundary elements and MITC9 shell finite elements, and
(2) with a coarse mesh of only 4×4 elements.

Results show the convergence of the DBEM-FEM model
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Figure 7: Application to a wave diffraction problem (vibra-
tion isolation wall). Top: multi-region BEM example mesh.
Bottom: DBEM-FEM example mesh.

Mesh NDOF tbuild [s] tsolve [s] ttotal [s]
BEM / t = 0.04 m 39851 207 175 382
BEM / t = 0.08 m 35729 175 128 303
BEM / t = 0.40 m 34177 158 113 271
BEM / t = 0.80 m 34161 158 112 270
DBEM–FEM (1) 32935 151 101 252
DBEM–FEM (2) 29623 125 75 200

Table 2: Computation times for solving the wave diffraction
problem

when H/t→∞, having excellent agreement for slendernes-
ses H/t ≥ 10. Nevertheless, the DBEM–FEM model is able
to roughly capture the response even for the case of slender-
ness H/t = 5. Results regarding Amplitude Reduction ra-
tios clearly show that in the DBEM–FEM model interaction
is happening on the wall mid-surface rather than on the real
boundaries of the wall. It is able to reproduce the displace-
ment field, although with a spatial shift that depends on the
thickness of the shell structure. This approximation may or
may not be acceptable depending on the application at hand.
Results along the outer face of the wall demonstrate that
even near-field results are in good agreement with those of
the multi-region BEM model. Differences are mainly found
near the edges, although these become appreciable only
for the smaller slendernesses. Coarse DBEM-FEM mesh
(2) gives almost identical results than the fine DBEM-FEM
mesh (1) regarding results along the free-surface. However,
there are small differences on the fluid equivalent stress and
solid tractions along the wall, being appreciable near the
edges for the smaller slendernesses.

Table 2 shows computation times when solving the prob-
lem for each wall thickness and mesh using a 28× 2.6 GHz
workstation. Computation times for DBEM–FEM meshes

Ωsoil

z
x

D

L

t

Flexible skirt

Rigid lid

y

z

x

Free-surface and lid: ordinary BE

Soil - skirt: crack BE - shell FE

Figure 10: Bucket foundation. Top: layout of the problem.
Bottom: DBEM–FEM example mesh.

correspond to the solution of the problem for one indi-
vidual thickness. Despite the additional costs of evaluat-
ing the HBIE, the building time of DBEM–FEM models
is only moderately affected when comparing multi-region
BEM and DBEM–FEM meshes. More important is the fact
that the DBEM–FEM intrinsically leads to a considerable
reduction of the number of degrees of freedom, which is
what greatly decrease the total computation time. This is
clearly more advantageous as the wall thickness reduces,
where the approximation introduced by the DBEM–FEM
model is also less relevant.

3.3 Application to the evaluation of bucket
foundation dynamic stiffnesses

In this section, the present approach is used for the calcu-
lation of impedances of bucket foundations in poroelastic
soils in order to see the transition from drained to undrai-
ned conditions. Impedances of flexible bucket foundations
in elastic soils have been studied by Liingaard et al. [25].
This type of foundation has two main parts: the lid, which is
a stiffened circular steel plate in contact with the mudline,
and the skirt, which is a cylindrical steel shell buried into
the seabed soil. Due to the stiffening, the lid can be consid-
ered rigid for the present analysis. Therefore, the geometry
is defined by the bucket diameter D (or radius R), the skirt
length L, and the skirt thickness t. It is assumed that the
bucket is installed in a poroelastic half-space, with perfectly
bonded (non-relaxed) interface conditions, and it is consid-
ered massless. Figure 10 depicts the layout of the problem
and an example mesh, including the considered coordinate
reference system. As in the previous problem, symmetry
properties of the problem are exploited and only a quarter
of the domain is discretised.

The impedances are calculated with respect to the dis-
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placements and rotations at the centre of the rigid lid. In
order to obtain them, unitary displacement and rotations are
given to the lid, and then resultant forces and moments are
evaluated. Given that the foundation is axisymmetric, the
6 DOF impedance matrix S is composed of 5 different im-
pedances [25]: swaying SHH , vertical SVV , rocking SMM ,
rocking - swaying coupling SMH , and torsional STT ; which
can be arranged in a dimensionless fashion as follows:

F1/µR2

F2/µR2

F3/µR2

M1/µR3

M2/µR3

M3/µR3


=



SHH 0 0 0 SMH 0
0 SHH 0 −SMH 0 0
0 0 SVV 0 0 0
0 −SMH 0 SMM 0 0

SMH 0 0 0 SMM 0
0 0 0 0 0 STT





U1/R

U2/R

U3/R

θ1

θ2

θ3


(54)

Figure 11 shows the absolute values of these impedan-
ces for bucket foundations of different L/D ratios buried
in sandy soils with different hydraulic conductivities. The
bucket has a diameter D = 10 m, and the considered L/D
ratios range from 0 (bucket without skirt), 0.5, 1 and 2. The
skirt has a thickness of 5 cm. The bucket is made of steel
with Young’s modulus E = 210 GPa, Poisson’s ratio ν =
0.25 and hysteretic damping ratio ξ = 0.01, where the com-
plex Young’s modulus used is E∗ = (1+ i2ξ )E. The prop-
erties of the sand are taken from the work from Buchanan
and Gilbert [12], where it is called “fine sand”: frame
shear modulus µ∗ = 7.12+ i0.23 MPa, frame bulk modulus
K∗ = 9.49+ i0.30 MPa, Poisson’s ratio ν = 0.20, porosity
φ = 0.43, fluid bulk modulus Kf = 2.39 GPa, Biot’s cou-
pling parameters Q = 1.362 GPa and R = 1.028 GPa, fluid
density ρf = 1000 kg/m3, fluid density ρs = 2670 kg/m3,
additional apparent density ρa = 107.5 kg/m3, and fluid
viscosity η = 1.01 mPa · s. According to Lin et al. [26],
for a fine sand and within the area where Biot’s theory is
applicable, the hydraulic conductivity k can range between
10−2 and 10−6 m/s. Therefore, five different hydraulic con-
ductivities ranging from drained, partially drained and un-
drained soils are considered: k→ ∞ (drained elastic soil),
k = 10−2, k = 10−4, k = 10−6, and k→ 0 (undrained elastic
soil) m/s. A dimensionless frequency a0 = ωR/cu

S is used,
where cu

S =
√

µ/(φρf +(1−φ)ρs) is the undrained S wave
velocity. The frequency range and scaling shown in Figure
11 has been chosen so that the transition from drained to un-
drained conditions can be clearly seen for each impedance
and bucket geometry.

It is well known that for a0 → 0 the response using a
poroelastic model with finite hydraulic conductivity k tends
to a drained elastic soil, while for a0→ ∞ the response of a
poroelastic model tends to the undrained elastic soil. How-
ever, the difference between impedances under drained and
undrained conditions, and the location where the transition
takes place in the frequency domain, depends on several
factors.

The most important factor influencing the difference be-
tween impedances under drained and undrained conditions
is the presence of P waves. Due to the bucket geometry
and the absence of P waves in the torsional mode, the tor-
sional impedance shown in Figure 11 does not depend on

hydraulic conductivity, and any poroelastic soil behaves as
the undrained elastic one. All other impedances imply P
waves and hence are sensitive to hydraulic conductivity, al-
though their origin and relevance are different. In the ver-
tical mode, P waves are mostly originated from the lid,
and thus, for a given diameter D, the difference between
drained and undrained impedances does not depend on the
length L nor L/D ratio. However, in relative terms, this
difference is more important for small L/D ratios because
the impedance values are smaller. In the swaying mode,
P waves are mainly originated from the skirt, and then the
difference between drained and undrained impedances does
depend on both diameter D and length L. In relative terms,
however, these differences are equally significant for differ-
ent L/D ratios because they increase as the impedance val-
ues increase. The rocking mode produces P waves from the
lid and the bucket, and hence both diameter D and length
L influence the difference between drained and undrained
impedances. The difference of impedances measured in
relative terms is considerable for all L/D ratios studied,
being more important for smaller L/D ratios. Rocking-
swaying impedances have significant differences between
completely drained and undrained impedances. They are
approximately constant in relative terms for all L/D ratios,
except for the case L/D = 0 of a bucket without skirt (cir-
cular footing). The influence of this coupling impedance
in the impedance matrix is negligible for very small L/D
ratios because its magnitude is much smaller than swaying
and rocking impedances, but as L/D increases the coupling
impedance becomes appreciable.

For all impedances except the rocking impedance, soils
are virtually behaving in undrained conditions for dimen-
sionless frequencies a0 > 1, i.e. f > 2 Hz for the consid-
ered soil. For the rocking impedance, soils start behaving
in undrained conditions at higher frequencies, especially for
small L/D ratios. As expected, the drained to undrained
transition frequency decreases as the hydraulic conductiv-
ity decreases.

This type of foundations is now very important because
of its potential as foundations of Offshore Wind Turbines.
The range of frequencies of interest depends on the type
of analysis, the site environmental conditions and the wind
turbine [2]. For dynamic loading analysis, one could take
a range from about 0.05 Hz to a few Hertz typically. This
corresponds to dimensionless frequencies greater than a0 =
10−2 for the soil properties used in this example. It can be
seen in Figure 11 that, for hydraulic conductivities greater
than 10−4 m/s, the drained/undrained transition takes place
within the range of frequencies of interest. The importance
of this fact depends on multiple factors: soil properties,
foundation design, wind turbine, etc.; but it should certainly
be taken into account.

4 Conclusions
In this paper, a three-dimensional boundary element – fi-
nite element dynamic model of open shells surrounded by
a poroelastic medium is presented. It uses the Dual BEM
for the surrounding medium, which is a Biot poroelastic
medium, and MITC shell elements for the shell structure.
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Figure 11: Impedances (absolute value) of bucket foundations of different L/D ratios installed in sandy soils

For this purpose, an analytically regularised HBIE needed
for the Dual BEM has been obtained.

The analytically regularised HBIE has been validated us-
ing the problem of a spherical cavity under radial excitation.
The DBEM–FEM model has been used in a wave diffrac-
tion problem in order to show its efficacy. It has been shown
that it is accurate enough for moderately thin structures, i.e.
slendernesses greater than 10, and relatively coarse meshes.
It has also been used to calculate the impedances of bucket
foundations in a sandy soil with different hydraulic conduc-
tivities. It has been observed that all impedances except
the torsional one have appreciable sensitivity to hydraulic
conductivity. Taking into account that bucket foundations
are being studied as foundation solutions for Offshore Wind
Turbines, it has been found that this sensitivity may be rel-
evant for their dynamic analysis.
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A Description of matrices Ii
S, Ii

H, U∗,
T∗, D∗ and S∗

Let x and n be the position and unit normal vectors of the
observation point, while xi and ni are those of the collo-
cation point. The distance vector between both points is
r = x− xi, its norm is r = |r|, and the distance deriva-
tive is denoted as r, j = ∂ r/∂x j. The partial derivatives
of the distance with respect to the unit normal vectors are
∂ r/∂n = r jn j and ∂ r/∂ni =−r jni

j. For the sake of brevity,
the wavenumbers are rewritten as k j = kP j and k3 = kS, and
the following frequency-dependent parameters are defined:

J =
1

ρ̂22ω2 , Z =
ρ̂12

ρ̂22
, α j = k2

j−
µ

λ +2µ
k2

3, β j =
µ

λ +2µ
k2

j−
k2

1k2
2

k2
3

(A.1)

The matrices Ii
S and Ii

H appearing respectively in SBIE and
HBIE are:

Ii
S =

[
J 0
0 δlk

]
, Ii

H =

[
1 0
0 δlk

]
(A.2)

The fundamental solution matrix U∗ is:

U∗ =
[
−τ∗00 u∗0k
−τ∗l0 u∗lk

]
(A.3)

where:

τ∗00 =
1

4π
η (A.4)

η =
1

k2
1− k2

2

[α1

r
e−ik1r− α2

r
e−ik2r

]
(A.5)

u∗0k =−
1

4π
Θr,k (A.6)

Θ =
Q/R−Z
λ +2µ

1
k2

1− k2
2

[(
1
r2 +

ik1

r

)
e−ik1r−

(
1
r2 +

ik2

r

)
e−ik2r

]
(A.7)

τ∗l0 =
1

4πJ
Θr,l (A.8)

u∗lk =
1

4πµ
(
δlkψ−χr,lr,k

)
(A.9)

ψ =
1
r

e−ik3r +
1
r

(
1

ik3r
+

1
(ik3r)2

)
e−ik3r− 1

k2
1− k2

2
·[

β1

r

(
1

ik1r
+

1
(ik1r)2

)
e−ik1r− β2

r

(
1

ik2r
+

1
(ik2r)2

)
e−ik2r

]
(A.10)

χ =
1
r

(
1+

3
ik3r

+
3

(ik3r)2

)
e−ik3r− 1

k2
1− k2

2
·[

β1

r

(
1+

3
ik1r

+
3

(ik1r)2

)
e−ik1r− β2

r

(
1+

3
ik2r

+
3

(ik2r)2

)
e−ik2r

]
(A.11)

The fundamental solution matrix T∗ is:

T∗ =
[ −(U∗n00 + JX ′∗j n j) t∗0k

−U∗nl0 t∗lk

]
(A.12)

where:

U∗n00 + JX ′∗j n j =
1

4π
W0

∂ r
∂n

(A.13)

W0 = ZΘ − J
∂η
∂ r

(A.14)

t∗0k =
1

4π

[
T01r,k

∂ r
∂n

+T02nk

]
(A.15)

T01 =−2µ
(

∂Θ
∂ r
− 1

r
Θ
)

(A.16)

T02 =−λ
(

∂Θ
∂ r

+
2
r

Θ
)
−2µ

1
r

Θ +
Q
R

η (A.17)

U∗nl0 =
1

4πµ

[
W1r,l

∂ r
∂n

+W2nl

]
(A.18)

W1 = Zχ−µ
(

∂Θ
∂ r
− 1

r
Θ
)

(A.19)

W2 =−Zψ−µ
1
r

Θ (A.20)

t∗lk =
1

4π

[
T1r,lr,k

∂ r
∂n

+T2

(
δlk

∂ r
∂n

+ r,knl

)
+T3r,lnk

]
(A.21)

T1 =−2
(

∂ χ
∂ r
− 2

r
χ
)

(A.22)

T2 =
∂ψ
∂ r
− 1

r
χ (A.23)

T3 =−
2
r

χ +
λ
µ

(
∂ψ
∂ r
− ∂ χ

∂ r
− 2

r
χ
)
+

Q
R

1
J

Θ (A.24)

The fundamental solution matrix D∗ is:

D∗ =
[
−d∗00 d∗0k
−d∗l0 d∗lk

]
(A.25)

where:

d∗00 =
1

4πJ
W0

∂ r
∂ni (A.26)

d∗0k =
1

4πµ

(
−W1r,k

∂ r
∂ni +W2ni

k

)
(A.27)

d∗l0 =
1

4πJ

(
−T01r,l

∂ r
∂ni +T02ni

l

)
(A.28)

d∗lk =
1

4π

[
T1r,lr,k

∂ r
∂ni −T2

(
−δlk

∂ r
∂ni + r,lni

k

)
−T3r,kni

l

]
(A.29)

The fundamental solution matrix S∗ is:

S∗ =
[
−s∗00 s∗0k
−s∗l0 s∗lk

]
(A.30)

where:

s∗00 =
1

4π

[
Q1

∂ r
∂n

∂ r
∂ni +Q2

(
n ·ni

)]
(A.31)

Q1 =
Z2

µ
χ−2Z

(
∂Θ
∂ r
− 1

r
Θ
)
+ J
(

∂ 2η
∂ r2 −

1
r

∂η
∂ r

)
(A.32)

Q2 =
Z2

µ
ψ +2Z

1
r

Θ − J
1
r

∂η
∂ r

(A.33)
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s∗0k =
1

4π

{
S01r,k

∂ r
∂n

∂ r
∂ni +S02nk

∂ r
∂ni +S03

[
ni

k
∂ r
∂n

+ r,k
(

n ·ni
)]}

(A.34)

S01 =−2Z
(

∂ χ
∂ r
− 2

r
χ
)
−2µ

[
−∂ 2Θ

∂ r2 +
3
r

(
∂Θ
∂ r
− 1

r
Θ
)]

(A.35)

S02 =
Q
R

(
Z
J

Θ − ∂η
∂ r

)
+Z
[

λ
µ

(
∂ψ
∂ r
− ∂ χ

∂ r
− 2

r
χ
)
− 2

r
χ
]
+

λ
[

∂ 2Θ
∂ r2 +

2
r

(
∂Θ
∂ r
− 1

r
Θ
)]

+2µ
1
r

(
∂Θ
∂ r
− 1

r
Θ
)

(A.36)

S03 =−Z
(

∂ψ
∂ r
− 1

r
χ
)
−2µ

1
r

(
∂Θ
∂ r
− 1

r
Θ
)

(A.37)
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B Transformation of some funda-
mental solution terms

The following relationships and the Stokes’ theorem let turn
strongly singular and hypersingular surface integrals into
weakly singular surface integrals and nearly singular line
integrals. Most of them may also be seen in Domı́nguez
et al. [17]. Note that Equation (B20) of [17] contained an
erratum as it lacks two terms. The present Equation (B.6)
corrects this.
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[8] Bordón JDR, Aznárez JJ, Maeso O (2014) A
2D BEM-FEM approach for time harmonic fluid-
structure interaction analysis of thin elastic bodies.
Eng Anal Bound Elem 43:19–29
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