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Presentación

Capítulo 1 

Presentación

1.1 Introducción

El nivel de implantación que ha alcanzado la energía eólica está provocando que cada vez 

resulte más difícil encontrar emplazamientos óptimos para la instalación de aerogeneradores. A día  

de hoy, se están construyendo parques eólicos en zonas anteriormente descartadas por las malas 

prestaciones  del  terreno  de  cimentación,  dado  el  mayor  coste  y  dificultad  que  supone  la  

implantación en estos emplazamientos. Entre estas malas prestaciones se pueden citar, por ejemplo, 

la escasa resistencia del suelo y la presencia de agua a la cota de cimentación o en estratos más  

profundos. 

Sin  duda,  el  desarrollo  de  los  medios  informáticos  de  los  últimos  años  y  su  uso 

generalizado por investigadores y calculistas ha permitido abordar modelos numéricos cada vez 

más complejos capaces de representar mejor diversos problemas de ingeniería. En particular, el  

comportamiento dinámico de estructuras está fuertemente influenciado, entre otros factores, por la  

interacción de las regiones involucradas. En este Trabajo Fin de Máster (TFM) se aborda el cálculo 

de  impedancias  de  cimentaciones  a  base  de  zapatas  rígidas  utilizadas  habitualmente  en 

aerogeneradores en situaciones en las que el terreno es poco competente debido a la presencia de  

agua,  bien  porque  en  su  totalidad  se  encuentra  por  debajo  del  nivel  freático,  o  bien  porque 

encontrándose a  una mayor  profundidad,  esté  relativamente próximo a  la  cota de cimentación. 

Como se justificará a lo largo de este trabajo, la caracterización de este tipo de suelos como un  

medio  poroelástico unido al  método numérico  que  aborda  la  solución  de problema conduce a 

resultados altamente fiables. 

A continuación, se hace una breve descripción de los medios poroelásticos (sección 1.2). 

En la sección 1.3, se introduce el método numérico que permite abordar la solución de problemas 

en los que existen regiones que pueden caracterizarse como este tipo de medios. En la sección 1.4  
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se esboza el  problema que se aborda con el  presente trabajo.  En la sección 1.5 se presenta el  

alcance  y  objetivos  del  trabajo.  Finalmente,  en  el  apartado  1.6,  se  hace  una  descripción  de 

contenidos del presente documento.

1.2 El medio poroelástico

Un medio poroelástico es un 

material con huecos en su interior 

(poros)  los  cuales  pueden  estar 

rellenos  de  un  fluido  (figura  1), 

que, normalmente, será agua, aire 

o una mezcla ambos. Los poros se 

pueden  encontrar  aislados  o 

unidos entre  sí.  Dependiendo de 

cómo  sea  la  comunicación  de 

estos poros, la porosidad, uno de 

las  principales  propiedades  que 

gobiernan el comportamiento de estos medios, se puede clasificar como:

a) Porosidad total: se define como la fracción del volumen total del material que no está ocupado 

por matriz.

b) Porosidad interconectada o efectiva: se define como el volumen total del material que representa  

espacios que pueden contener fluidos y se encuentran comunicados entre sí.

c) Porosidad no interconectada o no efectiva: se define como la fracción del volumen total del  

material  que  está  conformada  por  los  espacios  que  pueden  contener  fluidos  pero  no  están 

comunicados entre sí.

De lo anterior se obtiene que la porosidad total es la suma de las otras dos definidas. El  

carácter bifásico del medio poroso, esto es, la posibilidad de que el medio fluido transite a través de 

la matriz sólida, se produce únicamente por lo que se ha denominado porosidad interconectada. Por  

tanto,  en  lo  sucesivo  se  llamará  porosidad  (o  índice  de  poros)  a  esta  porosidad  efectiva.  La  

existencia de otro tipo de porosidad (no interconectada o no efectiva), simplemente modificará, a 

un  nivel  macroscópico,  las  propiedades  de  la  matriz  solida  (su  densidad  y  sus  características  

mecánicas).  Si  los poros  interconectados están completamente llenos de líquido se dirá  que el 
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medio poroelástico está saturado. Sin embargo, si en el interior de estos intersticios existe fluido en 

fase gaseosa, lo que provoca que la fase líquida no ocupa completamente los poros de la matriz  

sólida, será un medio cuasisaturado. A modo de ejemplo, esto puede visualizarse como un líquido 

que tiene disueltas pequeñas burbujas de aire.

Muchos elementos naturales (como por ejemplo algunos tipos de rocas, suelos saturados de 

agua, acuíferos, lechos de sedimentos y bolsas de petróleo), algunos tejidos biológicos (tales como 

huesos, madera y corcho) y determinados materiales artificiales (tales como cementos y cerámicas)  

pueden ser considerados como medios porosos.

A pesar de la naturaleza bifásica del medio poroelástico realizada, es posible abordar su 

comportamiento a nivel macroscópico estableciendo unas propiedades medias del mismo de forma 

tal que sean de aplicación las hipótesis de isotropía y homogeneidad clásicas de la mecánica del  

medio continuo.

Terzaghi (1925) observó un fenómeno por el cual a un suelo o medio cuando se le aplica  

una carga sostenida en el tiempo experimenta, aparte de una deflexión instantánea, un asentamiento  

de manera continua y gradual en el tiempo. Este fenómeno es conocido como consolidación de 

suelo,  y es especialmente pronunciado en determinados tipos de suelos como son las arenas y  

arcillas  saturadas.  Así,  Terzaghi  lograba,  mediante  un  medio  poroelástico,  modelar  de  manera 

plausible el fenómeno ampliamente observado de la consolidación de suelos, pues este tipo de 

material  también  presenta  una  deflexión  prolongada  en  el  tiempo  al  someterse  a  una  carga 

sostenida, la cual depende de la velocidad a la que la fase fluida es expulsada de los intersticios de  

la fase sólida. Sin embargo, el modelo de Terzaghi tenía la limitación de referirse solo al caso  

monodimensional.

Fue  Biot  quien  desarrolló  una  serie  de  artículos  aparecidos  en  1941  relativos  al  caso 

isótropo y estático. En los años 1955 y 1956 presentó el mismo autor la teoría general referente al  

caso anisótropo y en 1956 la ampliación al caso dinámico, estableciendo la teoría de propagación 

de ondas en medios poroelásticos saturados. Otras contribuciones que han tenido un papel relevante 

en el desarrollo de la teoría general de medios poroelásticos saturados son las siguientes: Biot (Biot  

y otros, 1957), Biot (1962), Skempton (1954), Rice (Rice y otros, 1976) y Stoll (1977). También es 

destacable el trabajo de Domínguez (1995), el cual realiza un resumen de la formulación, tanto  

estática como dinámica, de la Poroelasticidad.

En este TFM, el suelo saturado de agua en el que descansa la zapata cuya impedancia se  
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calcula, se ha caracterizado como un medio poroelástico de acuerdo a la formulación de Biot.

1.3 El Método de Elementos de Contorno (MEC)

Uno de los métodos numéricos más utilizados para abordar problemas en Ingeniería Civil es el 

Método de Elementos Finitos (MEF). Sin embargo, este método tiene una serie de debilidades cuando 

se trata de problemas de propagación de ondas en regiones seminfinitas (suelo bajo la cimentación). 

Este método requiere la construcción de una malla tridimensional que ha de ser truncada a cierta 

distancia del área de interés. Sin el tratamiento apropiado, dicho truncamiento refleja parte de la energia 

producida en el dominio, y por tanto no permite cumplir la condición de radiación en el infinito de 

Sommerfeld (la energia radiada por una fuente debe desvanecerse en el infinito).

Una técnica que no se ve afectada por el problema de truncar la malla a una cierta distancia de 

la zona de estudio es el Método de Elementos de Contorno (MEC), el cual permite abordar de manera 

muy natural dominios infinitos y seminfinitos.

Su aplicación requiere formular dichas ecuaciones en el contorno de las regiones constituyendo 

la denominada formulación integral en el contorno. La formulación integral relaciona las variables 

primarias del problema (desplazamientos y/o presiones) y sus derivadas (tensiones y/o derivada de la 

presión) a través de un problema de referencia (solución fundamental). La resolución numérica de estas 

ecuaciones hace necesario discretizar el contorno en elementos y aproximar las variables del problema 

en función de los valores que adopta estas en los nodos de los elementos. Con todo esto y un conjunto 

de  soluciones  fundamentales  independientes,  la  igualdad  integral  en  el  contorno de  partida  podrá 

transformarse en un sistema de ecuaciones algebraicas que permitirá la obtención de una solución 

aproximada del problema. 

La  División  de  Mecánica  del  Medio  Continuo  y  Estructuras  del  IUSIANI  lleva  años 

desarrollando  códigos  basados  en  MEC  y,  actualmente,  dispone  de  un  nuevo  software  llamado 

Multifebe el cual será el empleado en este TFM.

1.4 Cálculo de impedancias de cimentaciones rígidas superficiales  

o embebidas considerando la capa de nivel freático

Un adecuado diseño del conjunto aerogenerador-cimentación hace imprescindible conocer su 

comportamiento dinámico. Este se ve fuertemente influenciado por los fenómenos de interacción suelo-
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estructura que se pueden resumir en una serie de efectos cinemáticos e inerciales producidos en la 

estructura y el suelo como resultado de la flexibilidad de este último, fenómenos que adquieren más 

importancia a medida que el suelo de cimentación se vuelve más blando.

Se define la impedancia o rigidez dinámica de una cimentación como la relación entre una 

fuerza (momento) aplicada a una cimentación rígida carente de masa y el desplazamiento (rotación) 

resultante. En el caso de dinámica armónica las funciones de impedancia son números complejos que 

relacionan  tanto  la  magnitud  como  la  fase  de  las  fuerzas  aplicadas  a  la  cimentación  con  los 

desplazamientos resultantes.

Así,  una  manera  clásica  de  caracterizar  esta  interacción  es  calcular  la  impedancia  de  la 

cimentación, ya que permite construir un modelo simple y realista del problema de cara al análisis 

dinámico  del  conjunto,  sustituyendo  el  terreno  por  resortes  y  amortiguadores  que  representan 

adecuadamente la interacción. Una vez caracterizado el terreno con estos resortes y amortiguadores, es 

posible someter al conjunto a cargas dinámicas  para ver su comportamiento (respuesta). 

Existen, entre otros, dos métodos para obtener la respuesta completa de un sistema estructural: 

los métodos directos y el de los tres pasos [ver, por ejemplo, Medina (2015)]. 

En los métodos directos o de un paso,  la estructura y el suelo se analizan conjuntamente 

mediante un método numérico (MEF, MEC, etc...). La solución puede ser obtenida en el dominio del 

tiempo, procedimiento que permite, por ejemplo, tener en cuenta el comportamiento no lineal de la 

estructura y del suelo; o en el dominio de la frecuencia, obteniendo las funciones de transferencia para 

cada valor de la frecuencia de excitación mediante la solución de un sistema de ecuaciones lineales, 

correspondientes a la transformada de Fourier  de las ecuaciones de equilibrio.  La respuesta en el 

dominio del tiempo se obtiene aplicando la transformada inversa de Fourier al producto compuesto por 

dichas funciones de transferencia y la transformada de Fourier de la excitación. El primer procedimiento 

es  generalmente  más  costoso  debido  a  que  los  algoritmos  usados  son  condicionalmente  estables 

dependiendo del intervalo de integración, y este parámetro es a veces inaceptablemente pequeño. Por su 

parte, el método en el dominio de la frecuencia, en algunos casos se vuelve igualmente costoso cuando 

el número de frecuencias necesarias es elevado, no pudiéndose simular el comportamiento no lineal del 

suelo, debiendo recurrir a su linealización. 

El  método  de  los  tres  pasos  se  basa  en  la  técnica  de  subestructuración  (se  considera 

separadamente la estructura y el suelo). El procedimiento de análisis se basa en el cálculo sucesivo de 

tres problemas:
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a) Determinación de los desplazamientos de la cimentación, considerada infinitamente rígida, sin masa 

y libre de la estructura apoyada en ella, sujeta a un tren de ondas incidente a través del suelo, o a un 

movimiento del contorno provocado por la incidencia de las ondas sísmicas (solo para el caso de 

estudios sísmicos). 

b) Cálculo de la rigidez dinámica de la cimentación, supuesta rígida y sin masa, mediante la aplicación 

de movimientos unitarios y evaluación de los esfuerzos producidos en los contornos interfase entre la 

cimentación y el terreno. 

c) Determinación de la respuesta de la estructura suponiéndola apoyada sobre resortes y amortiguadores 

(modelos dinámicos que representan el suelo flexible) cuyas características se han obtenido en el paso 

b), sometida a los desplazamientos calculados en a). 

Si se admiten las hipótesis usuales de comportamiento elástico y lineal, el análisis puede ser 

desarrollado  en  el  dominio  de  la  frecuencia.  En  este  sentido,  este  segundo  método  presenta  los 

inconvenientes de no poder simular el comportamiento no lineal del suelo y el hecho de no poder incluir 

la influencia que sobre las propiedades del suelo ejerce la estructura (que a su vez tienen un efecto 

importante sobre tensiones producidas en la interfase suelo-cimentación), al no estar presente esta en los 

pasos a) y b).

Sin embargo, los modelos son más simples y permite realizar análisis de sensibilidad basados 

en distintas hipótesis a lo largo de los tres pasos, obteniéndose una información más completa de la 

influencia de los distintos factores que intervienen en el problema.

Antes de exponer el problema planteado en este TFM  se definirá qué se entiende por zapata 

rígida, por ser estas las que se utilizarán en la obtención de impedancias. La Instrucción de Hormigón 

Estructural (EHE) define dos tipos de zapatas: rígidas o flexibles. Primero define una distancia, llamada 

vuelo (vmax), que según sean las características constructivas de la cimentación, tendrá un valor. Para los 

propósitos de este TFM, bastará con definirla como la distancia que hay desde el exterior de la base del 

aerogenerador hasta el exterior de la zapata, medida paralelamente al suelo. Conocida esa distancia, la 

cimentación se clasifica como rígida si vmax  es menor o igual que 2h, siendo h el canto de la zapata. 

Así, según sean de un tipo u otro tienen un comportamiento, y, por tanto, análisis distinto. 

Cuando son sometidas a carga, las rígidas se pueden asimilar a un sólido rígido. Con esta propiedad es 

posible obtener el comportamiento del conjunto conociendo el comportamiento de solo una partícula. 

Así,  se pueden simplificar los cálculos enormemente. Las flexibles no cumplen esta propiedad, se 
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dimensionan con la Teoría General de Flexión y quedan fuera del ámbito de este TFM. 

Respecto del problema que se plantea en este TFM, gráficamente es el de la figura 2. Se trata de 

un aerogenerador que descansa sobre un terreno seco y, a cierta profundidad, habrá terreno saturado con 

agua, es decir, que no admite más capacidad de absorción de agua (nivel freático). 

En la figura 3 se muestra un esquema del problema de interacción zapata-suelo y un ejemplo de 

la discretización empleada para abordarlo mediante el MEC:
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El terreno tiene dos regiones, una superior y otra inferior. La superior está compuesta de  

una matriz (esqueleto sólido) y no tiene agua (drenado), ocupando su lugar aire. La inferior está 

compuesta de una matriz (esqueleto sólido), que podrá ser igual o no que la superior, y el volumen 

de los poros está totalmente ocupado por agua, no admitiendo más (estado saturado). Respecto del  

mallado se observa que solo se discretizan los contornos, y ello es debido a que se utilizará el  

MEC. 

Un posible modelo estructural para 

el aerogenerador puede ser un pilar 

en voladizo con la masa del conjunto 

concentrada  en  el  extremo  no 

empotrado  y  el  empotramiento  se 

podrá  considerar  idealmente  con 

rigidez  infinita  (figura  a)  o  más 

realísticamente  con  cierta  rigidez 

finita (figura b). 

El  problema  de  cálculo  de  la 

impedancia  es  un  problema  clásico 

abordado por infinidad de autores en los 

últimos  tiempos.  Por  ejemplo,  la 

formulación  en  el  dominio  de  la 

frecuencia para obtener rigideces de cimentaciones rectangulares descansando sobre, o embebidas en , un 

semiespacio viscoelástico fue propuesta primero por Domínguez (1978a, b), Otternstreuer y Schmid (1981) y 

Otternstreuer (1982), siguiendo la misma aproximación para estudiar, respectivamente, rigideces dinámicas de 

cimentaciones y la interacción cruzada entre dos cimentaciones. Domínguez y Alarcón (1981a) investigaron 

funciones de forma singulares en el estudio de cimentaciones  rígidas. Domínguez (1981) y Domínguez y 

Abascal (1982) estudiaron el método de las imágenes aplicado al cálculo de rigideces estáticas y dinámicas de 

cimentaciones enterradas cuadradas tridimensionales. Asimismo, suelos no-homogéneos han sido estudiados 

por Abascal (1984) y Abascal y Domínguez (1986). Apsel (1979) usó el MEC indirecto en combinación con 

funciones de Green semiexplícitas para calcular rigideces de cimentaciones circulares embebidas en un 

semiespacio estratificado. Rigideces dinámicas de cimentaciones circulares sobre la superficie o embebidas en 

suelos estratificados se han calculado usando el MEC directo por Gómez-Lera et al.(1985), Alarcón et al.  

(1989) y Emperador y Domínguez (1989). El MEC ha sido también usado para calcular rigideces dinámicas de 

cimentaciones cuando existe separación suelo-estructura, por Spyrakos y Patel (1987), Hillmer y Schmid 
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(1988), y Abascal y Domínguez (1990). 

Respecto al grupo de investigación de la Universidad de Las Palmas de Gran Canaria en el cual 

se desarrollará este TFM, llevan años aplicando con éxito códigos basados en el MEC para la resolución 

de problemas de Ingeniería Civil. Por ejemplo, en la respuesta sísmica de presas bóveda, prestando 

especial atención a la influencia de la presencia de sedimentos en el fondo del embalse. Dicho grupo ha 

creado modelos 3D de presas bóveda (Maeso y otros, 2002b) y (Aznárez y otros, 2004) donde la 

interacción entre el sedimento y las restantes regiones implicadas es tenida en cuenta de forma rigurosa 

mediante la aplicación de ecuaciones de equilibrio y compatibilidad adicionales en los nodos de las 

interfases. El considerar el sedimento como un medio bifásico permite obtener resultados más próximos 

a  la  realidad  física  de  su  comportamiento  a  cambio,  eso  sí,  de  un  coste  computacional 

considerablemente mayor. Este trabajo avanza en una línea de investigación iniciada por el Profesor de 

la Universidad de Sevilla José Domínguez y que arranca con Medina (1987) en la que se analiza la 

respuesta sísmica de presas de gravedad a través de un modelo bidimensional de elementos de contorno 

donde coexisten regiones viscoelásticas (presa y terreno) y fluidas (agua embalsada) y tiene su principal 

referente en las investigaciones de Maeso y Domínguez [(Maeso, 1992), (Maeso y otros, 1993) y 

(Domínguez y otros, 1993)] que generalizan esta estrategia a problemas tridimensionales permitiendo el 

estudio dinámico de presas bóveda. Además, en la tesis doctoral de Aznárez (2002) se completa el 

modelo tridimensional con la inclusión de los sedimentos caracterizados como un medio poroelástico, 

manteniéndose  el  acoplamiento  riguroso  entre  los  tres  tipos  de  regiones  que el  modelo  es  capaz 

manejar: elásticas o viscoelásticas, potenciales y poroelásticas.

Respecto de problemas de interacción suelo-estructura, han tratado problemas de cimentaciones 

pilotadas en distintas Tesis Doctorales [(Padrón, 2009), (García,  2012), (Medina, 2015), o (Santana, 

2015)]. Se han estudiado problemas en los que solo hay un pilote o varios. En el caso de varios, han 

estudiado el cómo afecta al resultado la interacción de un elemento sobre el conjunto.

Por último, respecto del cálculo de impedancias de cimentaciones no pilotadas, han aparecido 

una serie de artículos tratando de dar continuación a trabajos anteriores. Así, Aznárez (1999) sigue 

estudiando  las  rigideces  dinámicas  (vertical,  horizontal  y  cabeceo),  todavía  de  cimentaciones 

superficiales, pero utilizando un modelo tridimensional. Por otra parte, Maeso (1999), ya se enfrenta al 

caso de cimentaciones embebidas, para las cuales calculará la impedancia vertical, utilizando el mismo 

modelo que Aznárez. Además, Gracia (2002) continua con el cálculo de impedancias sobre medios 

poroelásticos para cimentaciones superficiales o embebidas. Con este TFM se pretende dar continuidad 

a todo el trabajo anterior de estos investigadores.

9



Capítulo 1 

1.5 Alcance y objetivos

La determinación de la respuesta estructural asumiendo condiciones de apoyo ideales,  por 

ejemplo mediante un empotramiento, permite un análisis sencillo y, en muchas ocasiones, suficiente. 

Sin embargo, cuando se trata de estructuras sometidas a cargas operacionales de carácter dinámico, 

como es el caso de aerogeneradores, es muy importante incluir condiciones de apoyo más realistas a fin 

de poder evaluar correctamente si alguna de las frecuencias naturales es cercana a alguna de las de 

excitación, en cuyo caso la vida útil del aerogenerador puede verse reducida.

Con este TFM se pretende contribuir al estudio de este tipo de problemas empleando como 

técnica  numérica  el  Método de  Elementos  de  Contorno  (MEC)  en  un  modelo  tridimensional  de 

elementos  de  contorno  para  medios  viscoelásticos  y  poroelásticos,  que  permitirá  obtener  las 

impedancias de cimentaciones superficiales o embebidas. 

El terreno se considerará un medio estratificado, siendo de tipo poroelástico con aire en su 

interior  la  región superior  y  poroelástico con agua en su interior  en la  inferior.  Así,  será  posible 

modelizar el nivel freático. Además, se comparará este modelo con otro, habitualmente utilizado, que, 

para modelizar la región freática, considera el medio superior como viscoelástico con propiedades de 

esqueleto sólido (sólido drenado) y el medio inferior como viscoelástico con propiedades de sólido no 

drenado. Por último, se estudiará la influencia de la constante de disipación del poroelástico saturado 

sobre los resultados.

1.6 Descripción de contenidos

En el Capítulo 2 se repasarán las ecuaciones de gobierno básicas, esto es, se hará un repaso 

sobre Elastodinámica y Poroelasticidad. En el Capítulo 3 se verá la técnica numérica empleada (MEC) 

para  la  resolución  de  las  ecuaciones  de  gobierno.  En  el  Capítulo  4  se  estudiará  el  problema  de 

interacción cimentación-suelo.  En los  Capítulos  5 y 6 se  resolverán una serie  de problemas cuya 

solución es conocida para validar el nuevo código MEC. Una vez comprobada la validez del código, se 

procederá a obtener las impedancias de un terreno que se modelizará como de dos regiones, la superior 

será de tipo poroelástica con aire en su interior con diferentes alturas H  y la inferior será poroelástica 

con agua en su interior. Luego, se analizarán  los resultados obtenidos. Por último, se resolverá una 

muestra de los problemas resueltos anteriormente cambiando la constante de disipación para ver cómo 

influye en los resultados.
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Capítulo 2 

Formulación en Elastodinámica lineal  y  Poroelasticidad  

armónica

2.1 Introducción

En este capítulo se desarrollan las ecuaciones básicas que gobiernan el comportamiento 

dinámico de los medios que se presentan aquí, estos son, sólidos elásticos y medios poroelásticos.  

Se comienza con las ecuaciones básicas de la Elastodinámica lineal. Luego, se describe el medio 

poroelástico y sus ecuaciones básicas de gobierno. Para un estudio más en profundidad, consultar 

Aznárez (2002).

2.2 Ecuaciones básicas en Elastodinámica lineal

Las ecuaciones de equilibrio responden a:

σ ij , j+X i=ρ⋅üi  (1)

donde  σ ij , j  es el tensor de tensiones (simétrico),  X i  son las componentes de las fuerzas de 

volumen y ρ  es la densidad del material.  

Por otro lado, el tensor de pequeñas deformaciones se define como:

εij=
1
2
(u i , j+u j , i )  (2)

Por último, la relación entre el tensor de tensiones y deformaciones se establece con la ley 

de comportamiento llamada ley de Hooke, que para materiales homogéneos, isótropos, elásticos y  

lineales es: 

σ ij= λ⋅e⋅δij+2⋅G⋅ε ij  (3)

siendo λ=
2⋅G⋅ν
1−2⋅ν

 la constante de Lamé, e=εkk  es la dilatación volumétrica del medio, δij  la 
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delta de Kronecker y G  el módulo elasticidad transversal.

En problemas tridimensionales, las ecuaciones (1), (2) y (3) constituyen un sistema de 15 

ecuaciones con dependencia temporal y espacial. 

Este sistema puede ser condensado sustituyendo (2) en (3) y el resultado en (1), obteniendo 

la ecuación de Navier:

G⋅∇ 2u+( λ+G)⋅∇ ∇⋅u+X= ρ⋅ü  (4)

Para obtener (4) en el dominio de la frecuencia, se asume un desplazamiento armónico del 

tipo u( x , t)=u( x ,ω)e iω t . Operando se obtiene:

G⋅∇ 2u+( λ+G)⋅∇ e+X=−ω2
⋅ρ⋅ü  (5)

2.3 Propiedades del medio poroelástico

El modelo planteado por Biot cumple con las propiedades de isotropía, homogeneidad (con 

unas propiedades medias del material en el que cualquier discontinuidad es mucho menor que la  

longitud  característica),  comportamiento  elástico,  lineal  y  rango  de  trabajo  de  pequeñas 

deformaciones y desplazamientos. 

Como  primer  paso,  se  definirán  una  serie  de  magnitudes  geométricas,  estáticas  y 

cinemáticas, que tratan de representar el comportamiento del material. Estas son:

1.-  Porosidad ( ϕ ): es la relación entre el volumen de intersticios y el volumen total del material 

homogéneo. Este concepto se refiere al volumen de los poros interconectados, en ningún caso al  

ocupado por  los  poros  aislados,  los  cuales  son considerados como parte  del  material  sólido y  

simplemente alterarán las propiedades de este si son abundantes. La porosidad se considera una 

constante del material, y es igualmente la relación entre el área de poros y el área total en una  

sección de material cualquiera.

ϕ=
V p

V
=

A p

A
 (6)

2.- Vector de desplazamientos en el sólido ( u i ).

3.- Vector de desplazamientos en el fluido ( U i ).

4.- Tensor de tensiones totales sobre material homogéneo ( σij ).

5.- Presión de poro ( p ): es la presión del fluido en los intersticios. Se puede entender como la 

presión que debería existir en un recipiente lleno del mismo fluido para que, puesto en contacto con 

el sólido poroelástico, no se produzca intercambio alguno de fluido entre el medio y el recipiente. 

6.- Tensor de tensión efectiva ( σ ' ij ): (también llamada tensión efectiva de Terzaghi, por ser este 
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autor  quien introdujo su uso).  Es  la tensión en exceso sobre la  presión de poro a la que está  

sometido el material. En general, es la tensión que caracteriza el fallo de estos materiales.

σ ij
' =σ ij +δ ij⋅p  (7)

7.- Tensión equivalente en el fluido: es la presión del fluido en los intersticios referida al área total  

del material homogéneo en una sección cualquiera.

τ=−ϕ⋅p  (8)

8.- Tensor de tensiones equivalentes sobre el esqueleto sólido ( τij ):

τij=σij+δ ij⋅ϕ⋅p  (9)

9.- Tensor de deformaciones en el esqueleto sólido ( εij ): deformaciones experimentadas por la fase 

sólida del medio poroso (esqueleto sólido).

εij=
1
2
( ui , j+u j , i )  (10)

siendo la dilatación del esqueleto:

e=ε11+ε22+ε33=u i , i  (11)

10.- Dilatación del fluido:

ε=U 1,1+U 2,2+U 3,3=U i , i  (12)

11.- Desplazamiento relativo del fluido respecto al sólido: 

w i =U i−u i  (13)

12.- Incremento del contenido del fluido en el material homogéneo ( ζ ): se puede definir como la 

cantidad  de  volumen  de  fluido  que  entra  en  los  poros  por  unidad  de  volumen  del  material  

homogéneo:

ζ=−ϕ⋅wi ,i=−ϕ(ε−e)  (14)

13.- Vector de descarga ( q i ): es la velocidad del fluido saliente del medio poroso. Es decir, el 

volumen de fluido por unidad de área y unidad de tiempo que abandona el sólido poroelástico:

q i=ϕ⋅(U̇ i− u̇i )  (15)

2.4 Ecuaciones básicas del medio poroelástico

Como en todo problema de Mecánica del Medio Continuo, en el medio poroelástico hay 

unas  ecuaciones  de  equilibrio  que  incluyen  las  fuerzas  de  inercia  y  disipación,  y  una  ley de 

comportamiento, que relaciona tensiones y deformaciones. Las combinación de las ecuaciones de 
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equilibrio y la ley de comportamiento permite obtener una ecuación de onda, que depende de los  

desplazamientos de ambas fases, que será la que describa su comportamiento dinámico.

2.4.1 Ecuaciones de equilibrio

La ecuación de equilibrio en términos de tensiones totales para el caso dinámico es:

σ ij , j+X i= ρ1⋅ü i+ ρ2⋅Ü i  (16)

donde:

- X i  es la fuerza por unidad de volumen sobre el material homogéneo.

- ρ1=(1−ϕ)ρs  es la densidad del esqueleto sólido (o del material sólido referida al  

volumen del material homogéneo), y ρs  es la densidad del material sólido.

- ρ2=ϕ⋅ρ f  la densidad del fluido referida al volumen del material homogéneo, y ρ f  

es la densidad del fluido.

La ley que gobierna el movimiento de la fase fluida en el interior de los intersticios del  

medio poroso (ley de Darcy), en este caso, se transforma de modo que el gradiente de presiones de 

fluido en la dirección perpendicular a una sección de un medio poroso tiene que vencer no solo la 

resistencia del esqueleto a ser traspasado por el fluido sino también las fuerzas de inercia. Así:

− p , i+ f i=
1
χ
⋅q i+ ρ f⋅Ü i+

ρa

ϕ (Ü i− üi )  (17)

donde aparece el término de inercia del fluido ρ f , Ü i  y un término adicional que depende de las 

aceleraciones relativas entre los dos componentes y tiene en cuenta que no todo el fluido se mueve 

en la dirección del gradiente macroscópico de presiones sino que recorre los intersticios. Así, el 

parámetro ρa , conocido como densidad añadida, depende de la configuración de los intersticios, y 

debe ser obtenido experimentalmente.

La anterior ecuación puede ser escrita en términos de la tensión equivalente en el fluido 

τ ,i , y de los desplazamientos en sólido y fluido. Así:

τ , i+X i
'
= ρ12⋅üi+ ρ22⋅Ü i−b⋅( u̇ i−U̇ i )  (18)

donde:

-  X ' i  es la fuerza sobre el fluido por unidad de volumen del medio poroso

- ρ12=−ρa  ;  
ρ22=ρ2−ρ12

- b  es un parámetro llamado constante de disipación 

b=
ϕ

2

χ
=
ϕ

2
⋅μo

k
 (19)
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Esta constante b  representa las fuerzas de viscosidad por unidad de volumen y por unidad 

de velocidad relativa del fluido respecto de la matriz sólida. La variable k  es la permeabilidad de 

Darcy, μ0  es la viscosidad y ϕ  es la porosidad. De lo anterior se deduce que, cuando la velocidad 

relativa de ambas fases sea nula, no hay disipación. 

Al igual que las ecuaciones (18) están en función de  τ ,  la ecuación de equilibrio (16) 

puede escribirse en términos de las tensiones sobre el esqueleto sólido τij , tal y como hizo Biot. 

Para  ello  solo  hay que  utilizar  la  expresión  σij=τij+τ⋅δij  y,  teniendo  en  cuenta  la  anterior 

ecuación, se obtiene: 

τij , j+X i=ρ11⋅üi+ρ12⋅Ü i+b⋅( u̇ i−U̇ i )  (20)

donde:

- ρ11=ρ1−ρ12  ; ρ22=ρ2−ρ12  ; ρ12=−ρa

2.4.2 Ley de comportamiento en medio poroelástico

Las ecuaciones (18) y (20) constituyen un sistema de seis ecuaciones de equilibrio dinámico 

sobre  los  componentes  líquido y  sólido.  Empleándolas  junto a  las  leyes  de comportamiento,  que 

proporcionan las tensiones en ambos medios en función de sus desplazamientos, permiten plantear el 

problema en términos de las variables cinemáticas de cada fase. De esta manera, puede obtenerse un 

sistema de seis ecuaciones diferenciales, con sus correspondientes incógnitas, en el que estas son las seis 

componentes  de  los  desplazamientos  u i  y  U i .  Estas  ecuaciones,  junto  con las  condiciones  de 

contorno y las condiciones iniciales,  necesarias al  ser  un sistema diferencial,  tanto espacial  como 

temporal, definirían totalmente el problema para su resolución en términos de u i  y U i . Con objeto de 

emplear una nomenclatura igual a la original de Biot, se utilizará como parámetros características del 

material las constantes λ , G , Q  y R . Así, es posible escribir la ley de comportamiento como:

τ=Q⋅e+R⋅ε  (21)

τij=2G⋅εij+( λ+
Q2

R
)⋅e⋅δij+Q⋅ε⋅δij  (22)

2.4.3 Ecuaciones de gobierno en medio poroelástico

Finalmente,  sustituyendo (21)  y (22)  sobre  las  ecuaciones  de equilibrio (18)  y (20)  se 

obtendrán las ecuaciones de campo del caso dinámico. Estas son:

G⋅∇ 2ui+( λ+G+
Q2

R
)⋅e , i+Q⋅ε , i+X i=( ρ11⋅üi+ρ12⋅Ü i )+b⋅( u̇ i−U̇ i )  (23)
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(Q⋅e+R⋅ε),i+X i
'
=( ρ12⋅üi+ ρ22⋅Ü i )−b⋅( u̇ i−U̇ i )  (24)

Usando la notación vectorial se obtiene: 

G⋅∇ 2u+∇[( λ+G+
Q2

R
)∇⋅u+Q∇⋅U ]+X=( ρ11⋅ü+ρ12⋅Ü )+b⋅( u̇−U̇ )  (25)

∇(Q∇⋅u+R∇⋅U )+X '=( ρ12⋅ü+ρ22⋅Ü )−b⋅( u̇−U̇ )  (26)

Si se asume un desplazamiento armónico del tipo u( x , t)=u( x ,ω)e iω t  se obtienen las 

ecuaciones en el dominio de la frecuencia (notación vectorial):

G⋅∇ 2u+( λ+G)∇ e+[
Q
R
−
ρ̂12

ρ̂22

]∇ τ+[
ρ̂11 ρ̂22−

̂
ρ12

2

ρ̂22

]⋅ω2⋅u+X−
ρ̂12

ρ̂22

X '=0  (27)

∇
2
τ+ω

2 ρ̂22

R
τ+ω

2
⋅[ρ̂12−

Q
R
ρ̂22] e+∇⋅X '=0  

(28)

donde: 

ρ̂11=ρ11−i
b
ω ; ρ̂22=ρ22−i

b
ω ; ρ̂12=ρ12+i

b
ω ;  

(29)

2.4.4 Significado físico de las constantes poroelásticas

En  apartados  anteriores  han  aparecido  una  serie  de  constantes  que  caracterizan  el 

comportamiento dinámico del sólido poroelástico según la teoría clásica de Biot. Ahora se expondrá la 

interpretación física de estas constantes y, además, su relación con las propiedades mecánicas de los 

materiales que constituyen ambas fases. Para un estudio más extenso se puede consultar Biot (Biot y 

otros, 1957), Fatt (1959), Rice (Rice y otros, 1976), Yew (Yew y otros, 1978) y Berryman (1980).

De la ley de comportamiento obtenida según (21) y (22), aparecen  λ ,  G ,  Q  y  R .  Es 

posible, también, obtener una ley de comportamiento como (ver Aznárez, 2002): 

σij=2G⋅εij+( λ+α
2
⋅M )⋅e⋅δij−α⋅M⋅ζ⋅δij  (30)

p=M ζ−αM e  (31)

donde aparecen λ , G , α  y M . 

 De ellas, λ  y G  son constantes elásticas del esqueleto sólido drenado y su significado es 

el habitual en la Teoría de la Elasticidad. Las constantes α  y M  son: 
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α=( ζe )p=0
 (32)

1
M
=( ζp)e=0

 (33)

Así,  α  indica  la  cantidad de  fluido  extraído  del  medio  por  un  cambio  unitario  en el 

volumen del sólido sin cambio en la presión de poro y 1/M  la cantidad de fluido que, inyectada 

en  el  espacio  intersticial  del  esqueleto,  provoca  una  variación  unitaria  de  la  presión  de  poro 

manteniendo constante el volumen del medio. Además, la constante  R , relacionada con M , es 

una medida de la tensión equivalente sobre el fluido necesaria para forzar la inyección de fluido 

dentro mientras el volumen se mantiene constante. 

R=(−ϕ τζ )e=0
 (34)

Por otro lado, la constante Q  se refiere a una medida del acoplamiento entre dilataciones 

de las fases sólida y fluida del medio a presión de poro constante: 

Q=(R τε )p=0
 (35)

Mediante ensayos triaxiales es posible obtener algunos de estos parámetros. Así, sobre probetas 

drenadas y no drenadas se pueden obtener directamente los módulos de compresibilidad drenado y no 

drenado ( K d , K u )  y  el  coeficiente  de  Skempton  B  (Domínguez,  1995).  Mediante  ensayo  de 

cortadura  simple  se  puede obtener  G ,  λ  se  puede obtener,  por  ejemplo  de  λ=
2⋅G⋅ν
1−2⋅ν

 y  la 

constante que falta es: 

M=
Ku−K d

α
2

 
(36)

Por último, las constantes de Biot Q  y R  se pueden obtener de: 

Q=M ϕ(α−ϕ)  

R=M ϕ
2 (37)

Es posible relacionar estos coeficientes con las propiedades del medio poroelástico. Así, 

K s  y K f  representan los módulos de compresibilidad del sólido y fluido, respectivamente, y se 

pueden relacionar con M  y α  como: 

α=1−
Kd

K s

 (38)
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1
M
=

1
K s

−
Kd

K s
2+ϕ( 1

K f

−
1

K s)=
α−ϕ

K s

+
ϕ

K f
 (39)

 Por tanto:

R=
ϕ

2

1
K s

−
K d

K s
2+ϕ( 1

K f

−
1

K s )
 (40)

Q=

ϕ(1−ϕ K d

K s
)

1
K s

−
K d

K s
2+ϕ( 1

K f

−
1
K s)

 (41)

Se ve que las constantes de Biot  M  y  α  o  R  y  Q  dependen de la compresibilidad 

relativa de ambas fases y de la porosidad. Lo habitual es que K s≫Kd , por tanto, las expresiones 

se simplifican como: 

R=ϕK f  (42)

Q=(1−ϕ)K f  (43)

Por último, respecto de las densidades ρ11 , ρ22  y ρ12  que aparecen en las ecuaciones de 

equilibrio dinámico. Supóngase que las partículas del sólido y fluido se desplazan con igual valor 

u=U . Despreciando las fuerzas de volumen, las ecuaciones de equilibrio serían: 

σij , j=(ρ1+ρ2) üi=ρh ü i  (44)

τij , j=(ρ11+ρ12) ü i=ρ1 ü i  (45)

τ ,i=(ρ12+ρ22)ü i=ρ2 üi  (46)

siendo ρh  la densidad del medio homogéneo. Se puede comprobar que: 

ρh=ρ11+2ρ12+ρ22  (47)

donde ρ12=−ρa  es el término de acoplamiento inercial entre ambas fases. 

Considérese  ahora  que  solo  exista  desplazamiento  en  la  fase  fluida,  por  tanto  u=0 . 

Despreciando las fuerzas de volumen y considerando además un fluido no viscoso, las ecuaciones 

de equilibrio serían: 

τij , j=ρ12Ü i=−ρa Ü i  (48)

τ ,i=ρ22 Ü i=(ρ2+ρa)Ü i  (49)

En (49) se observa una inercia adicional  ρa ,  por tanto, el  desplazamiento del fluido a 

través del esqueleto no es uniforme. Así, si las partículas del esqueleto han de permanecer con  

18



Formulación en Elastodinámica lineal y Poroelasticidad armónica

desplazamiento nulo, deben aparecer tensiones en la matriz sólida con resultante de signo contrario  

a la aceleración del fluido. 

De  todo  lo  anterior,  se  ve  que  la  densidad  añadida  dependerá  de  los  intersticios  del  

esqueleto y es un parámetro que se determinará experimentalmente (Berryman, 1980). Aunque hay 

estudios que demuestran  que este parámetro depende de la frecuencia, en este TFM se considerará 

constante [(Biot, 1956) o (Bonnet y otros, 1985)].

2.5 Propagación de ondas en medios elásticos y poroelásticos

2.5.1 Propagación de ondas en medios elásticos

Ahora se procede a analizar la propagación de ondas en un medio elástico,  isótropo y 

homogéneo. Se parte, pues, de las ecuaciones de Navier, las cuales están acopladas. Stockes ideó 

un  procedimiento  para  desacoplarlas  basado  en  una  formulación  en  términos  de  la  dilatación 

volumétrica e  y el vector de rotación ω  :

e=εkk=∇⋅u  (50)

ω=∇×u  (51)

El laplaciano del campo de desplazamientos puede ser escrito como: 

∇
2 u=∇ e−∇×ω  (52)

Introduciendo esta ecuación en la ecuación de Navier y operando se llega a: 

∇
2 e=

1

c p
2

ë  (53)

∇
2
ω=

1

c s
2
ω̈  (54)

donde: 

c p
2
=
λ+2G
ρ ;cs

2
=

G
ρ  (55)

Las ecuaciones (53) y (54)  son una forma desacoplada de la ecuación de Navier pero  

en  este  caso  están  en  términos  de  la  dilatación  volumétrica  y  del  vector  rotación.  La  

componente  llamada  dilatacional  se  propaga  a  velocidad  c p  mientras  que  la  componente 

equivoluminal se propaga a velocidad cs . Se cumple que c p  > cs  razón por la cual a c p  se 

les llama primaria y a cs  secundaria. 

Utilizando c p  y cs  es posible escribir la ecuación de gobierno como: 

19



Capítulo 2 

−cs
2
∇×ω+c p

2
∇ e=ü  (56)

Si se sustituye en esta expresión el campo de desplazamientos correspondiente a un problema 

de propagación plana armónica con velocidad de propagación c  y dirección determinada por el vector 

unitario s , que en notación compleja y para una amplitud unitaria, viene dado por (Domínguez, 1993): 

u=ei (ω t−k s⋅x)d  (57)

donde  k  es el número de onda  (ωc ) ,  ω  la frecuencia angular,  x  el  vector de posición de 

cualquier punto y d  un vector unitario en la dirección del movimiento. Operando se obtiene: 

(cs
2
−c2

)d+(c p
2
−cs

2
)(s⋅d ) s=0  (58)

De las ecuaciones (57) y (58) se observa que si c=c p , solo se cumple (58) si s=±d , es 

decir, dirección de propagación y desplazamiento coinciden. 

Análogamente, si c=cs , solo se cumple (58) si s⋅d=0 , es decir, dirección de propagación y 

desplazamiento son perpendiculares.  

Estas conclusiones son generalizables para cualquier tipo de perturbación.  Aquí solo se han 

tratado  algunos  aspectos  básicos  que  ayudarán  a  entender  la  propagación  en  otros  medios.  Un 

tratamiento en profundidad de la Teoría de la Elastodinámica puede estudiarse en Achenbach (1973) o 

Eringen (Eringen y otros, 1975).

2.5.2 Propagación de ondas en medios poroelásticos

Al igual que en medios elásticos, en los medios poroelásticos hay propagación de ondas. 
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Sin embargo, la diferencia está en que en poroelásticos habrán dos tipos de onda P y una de onda S.  

En las siguientes líneas se justificará matemáticamente esta afirmación. 

El  procedimiento se  inicia  igual  que en medios  elásticos,  es  decir,  haciendo uso de la 

dilatación volumétrica y del vector de rotación para ambas fases:

e=∇⋅u ;ε=∇⋅U  (59)

ω=∇×u ;Ω=∇×U  (60)

Introduciendo estos en (25) y (26), eliminando las fuerzas de volumen y teniendo en cuenta 

(52) se obtiene: 

−G∇×ω+∇[(λ+2G+
Q2

R
)e+Qε]=ρ11 ü+ρ12Ü+b (u̇−U̇ )  (61)

∇(Q e+R ε)=ρ12 ü+ρ22Ü−b (u̇−U̇ )  (62)

Luego, aplicando el operador divergencia a estas se obtienen las ecuaciones que gobiernan 

la propagación irrotacional. Así, se obtiene: 

∇
2[(λ+2G+

Q 2

R
)e+Qε]=ρ11 ë+ρ12 ε̈+b (ė−ε̇)  (63)

∇
2
(Q e+Rε)=ρ12 ë+ρ22 ε̈−b (ė−ε̇)  (64)

En  este  caso  están  implicadas  dos  ondas  longitudinales  con  diferente  velocidad  de 

propagación en las que fluido y matriz sólida se mueven de forma acoplada.

Para obtener las ecuaciones que gobiernan la propagación rotacional  se debe aplicar el 

operador rotacional sobre (61) y (62). Así, se obtiene: 

G∇2
ω=ρ11ω̈+ρ12Ω̈+b (ω̇−Ω̇)  (65)

0=ρ12 ω̈+ρ22Ω̈−b (ω̇−Ω̇)  (66)

Primero se analizarán las ondas de corte (rotacionales).  Así,  una onda armónica que se 

propaga a igual velocidad en ambas fases en el sentido positivo z  dadas por: 

ω=Dω e i(ω t−k s z)  (67)

Ω=DΩ ei (ω t−k s z)  (68)

donde ω  es la frecuencia angular, k s  el número de onda, Dω  y DΩ  las amplitudes de las ondas 

de rotación en la fase sólida y líquida respectivamente. Sustituyendo (67) y (68) en (66) y operando 

se llega a: 

Ω=Λω  (69)
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donde: 

Λ=
iωb+ω2

ρ12

iωb−ω2
ρ22

 (70)

Se observa que el valor de  Λ  depende de la constante de disipación  b , la frecuencia 

angular ω  y las densidades de los medios. Si b≠0  el valor de Λ  es complejo por lo que habrá 

un desfase entre los vectores de rotación. 

Si se sustituye (67) , (68) y (69) en (65) se obtiene el número de onda: 

k s
2
=
ρω

2

G
 (71)

donde:

ρ=
ω

2
(ρ12

2
−ρ11ρ22)+iωb (ρ11+2ρ12+ρ22)

iωb−ω2
ρ22

 (72)

Así se llega a la conclusión que en un medio poroelástico se propaga una onda rotacional 

del mismo tipo que las ondas de corte vistas en medios elásticos. La velocidad de propagación será:

cs
2
=ω

2

k s
2  (73)

Pero en este caso hay una diferencia respecto del caso elástico: la velocidad depende de la 

frecuencia y tiene carácter complejo en el caso de que la fase fluida tenga viscosidad no nula. Si se 

supone un número de onda del tipo: 

k s=k s
r
+ik s

i  (74)

Se ve en (71) que solo tiene sentido valores positivos o nulos de k s
r . Si se sustituye (74) en 

(67) se obtiene: 

ω=Dω e−k s
i z e i (ω t−k s

r z )  (75)

El  primer  término  exponencial  amortigua  la  amplitud  en  sentido  creciente  de  z .  El 

segundo término representa un armónico e indica que la onda se propaga en dirección positiva en 

z  .

Es posible sacar alguna conclusión más de las ecuaciones anteriores. Si la constante de 

disipación b=0 , se obtiene de (69) y (73) respectivamente: 
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Ω=
−ρ12
ρ22

ω  (76)

cs
2
=

G

ρ11(1−
ρ12

2

ρ11ρ22
)

 (77)

Para  este  caso el  fluido y el  sólido rotan en fase  y la  onda se  propaga con velocidad 

constante sin amortiguamiento dado que en c  no hay parte imaginaria. Además, en el caso de que 

el término densidad añadida ρ12=0  el movimiento del fluido es irrotacional por lo que la onda S 

se propaga como si se propagara en un medio viscoelástico. Pero la velocidad estará corregida  

según la densidad del esqueleto sólido: 

cs
2
=

G
(1−ϕ)ρs

 (78)

Por otro lado, si b→∞ , Ω=ω  y la velocidad será cs
2
=

G
(1−ϕ)ρs+ϕρ f

.  

Para el estudio de la componente irrotacional se ensaya un desplazamiento armónico para 

cada fase del tipo: 

u3=Du ei (ω t−k p z)  (fase sólida) (79)

U 3=DU e i (ω t−k p z )  (fase líquida) (80)

donde  k p  es el número de onda para propagación irrotacional, Du  y  DU  las amplitudes de la 

onda de propagación de fase sólida y líquida respectivamente. Si se sustituye (79) y (80) en (63) y 

(64) se obtiene la ecuación característica: 

A(k p
2
)

2
−B k p

2
+C=0  (81)

donde: 

A=λ+2G  (82)

B=ρω2+
(ω

2
ρ22−iωb)

R
(λ+2G)−[QR (ω2ρ22−iωb)−(ω2ρ12+iωb)][QR−ω

2
ρ12+iωb

ω
2
ρ22−iωb]  (83)

C=
ρω

2
(ω

2
ρ22−iωb)
R

 (84)

Los eigenvectores que se obtienen son los siguientes: 

k p1
2
=

B−√B2
−4AC

2A
; k p2

2
=

B+√B2
−4AC

2A
 (85)
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Dado que hay dos soluciones habrán dos ondas tipo P cuyas velocidades serán: 

c p1
2
= ω

2

k p1
2 ;c p2

2
= ω

2

k p2
2 ;  (86)

A la onda de mayor valor se le llama onda P rápida, larga o de primer tipo. La más lenta se  

le  llama  onda  P lenta,  corta  o  de  segundo tipo.  Evidentemente,  ambas  ondas  dependen de  la 

frecuencia y se amortiguan en el sentido creciente de z  pero este es más acusado en las ondas de 

segundo tipo. Por este motivo, solo es posible detectarlas cerca de la perturbación. Además, si la  

constante  de  disipación  es  nula,  la  atenuación  también  lo  será  y  las  ondas  se  propagarán 

indefinidamente. 

Por último, del cálculo de eigenvectores se llega a que en el  caso de las ondas  P1  hay 

propagación en fase (esqueleto sólido y fluido) mientras que en el caso de P2  están desfasadas 180º.

2.6 Formulación integral y solución fundamental armónica

2.6.1 Formulación integral armónica

Se continúa con el análisis exponiendo ahora la formulación integral en el contorno. Se 

trata  de  unas  ecuaciones  obtenidas  a  partir  de  las  ecuaciones  de  gobierno  que  relacionan  las 

variables fundamentales en el interior del dominio Ω  con el contorno Γ . En tales ecuaciones se 

relacionan las variables del problema a resolver con otras correspondientes a un estado virtual cuya  

solución es conocida y la cual tiene pocas restricciones llamada solución fundamental. Con este 

conjunto de ecuaciones se podrá obtener la solución al problema planteado aplicando el MEC. 

2.6.1.1 Formulación integral en elastodinámica armónica

En ausencia de fuerzas de volumen, la forma integral del campo de desplazamientos de un 

estado elastodinámico de un dominio Ω  con contorno Γ  es: 

u j
k
+∫Γ t ji

* u i d Γ=∫Γ u ji
* t i d Γ  (87)

donde u j
k  es el desplazamiento en dirección j  del punto k  donde se aplica la fuerza excitadora, 

u i  y  t i  son los desplazamientos y las tensiones en dirección  i  del problema que se pretende 

resolver,  u ji
*  y  t ji

*  son  los  desplazamientos  y  las  tensiones  en  dirección  i  de  la  solución 

fundamental  cuando  se  aplica  una  carga  puntual  en  dirección  j ,  esto  es,  la  solución  de 

desplazamientos  y tensiones  que satisface la  ecuación de gobierno (ecuación de Navier)  en el  

dominio de la frecuencia  G⋅∇ 2u ji
*
+( λ+G )⋅∇ e j ,i

*
−ω

2
⋅ρ⋅u ji

*
+δ( x−xk)δij=0  donde se ha 

24



Formulación en Elastodinámica lineal y Poroelasticidad armónica

introducido la función delta de Dirac para darle un carácter puntual a la función excitadora.

2.6.1.2 Formulación integral en poroelasticidad armónica

En el caso poroelástico la formulación integral es: 

u j
k
+∫Γ t ji

* u i d Γ+∫Γ U nj
*
τ d Γ=∫Γ u ji

* t i d Γ−∫Γ τ j
* U n d Γ  (88)

−J τk
+∫Γ toi

* u i d Γ−∫Γ (U no
*
− J X i

'* ni)τ d Γ=∫Γ uoi
* t i d Γ−∫Γ τo

* U n d Γ  (89)

donde: 

J=
1

iωb−ω2
ρ22

 (90)

Las  tres  ecuaciones  (88)  relacionan  el  desplazamiento  en  cada  una  de  las  tres 

direcciones  ( j=1,2,3)  de un punto interno  k  del dominio  Ω  con el valor que adquieren 

los desplazamientos  u i  ,  U n  y las tensiones  t i  y  τ  en cada una de las fases del medio 

poroso en todo el  contorno  Γ ,  siendo  U n  el  desplazamiento de la  fase  fluida normal  al 

contorno. Los términos u ji
*  y t ji

*  constituyen los desplazamientos y tracciones de la matriz 

sólida en dirección  i  debidos a la carga puntual  aplicada según  j  actuando en la matriz 

sólida. Por otra parte, para la misma carga,  τ j
*  y  U nj

*  representan la tensión equivalente y 

desplazamiento  absoluto  normal  al  contorno  de  la  fase  fluida.  Estos  términos,  de  valor  

conocido, corresponden a la solución fundamental cuando la carga está aplicada en un punto 

de la matriz sólida como ya se ha indicado. La ecuación (89) corresponde a la representación  

integral de la tensión equivalente en un punto interno k  del dominio Ω  en la fase fluida del 

medio.  En  dicha  ecuación  se  relaciona  esta  variable  con  el  valor  que  adquieren  los 

desplazamientos  u i  y  U n ,  y  las  tensiones  t i  y  τ  en  cada  una  de  las  fases  del  medio 

poroso en todo el contorno Γ . En este caso, los términos uot
*  y t ot

*  son la componente i  de 

los  desplazamientos  y  tracciones  en  el  esqueleto  sólido  provocados  por  la  fuente  puntual 

colocada en un punto del fluido (el subíndice “o” que se corresponde con j=4  indica que la 

carga está aplicada en la fase fluida). De otro lado,  τo
*  y  U no

*  son la respuesta en tensión 

equivalente y desplazamiento normal del propio fluido a la misma solicitación. Al igual que 

antes,  estos  cuatro términos corresponden a  la  solución fundamental  en  el  caso  en  que  la  

carga esté aplicada en la fase fluida del medio.
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2.6.2 Solución fundamental armónica

En las formulaciones anteriores se observaron una serie de términos que hacen referencia a 

la  llamada  solución  fundamental.  Básicamente,  se  trata  de  una  solución  que  tienen  pocas 

restricciones.  En definitiva,  es  un artificio matemático  que aplicando las  ecuaciones  integrales 

sobre  el  contorno  vistas  anteriormente,  permite,  mediante  la  aplicación  del  MEC,  resolver  el  

problema planteado. Dada su importancia, se expondrán las soluciones fundamentales de los tres 

medios expuestos.

2.6.2.1 Solución fundamental elastodinámica

La solución general correspondiente al problema de cargas concentradas armónicas en un 

punto de un medio elástico ocupando un espacio fue obtenida por  Stokes  (1849).  La solución 

fundamental explícita para el estado dinámico de la transformada de Laplace fue presentada para 

problemas en dos y tres dimensiones por Cruse (Cruse y otros, 1968). Estos autores siguieron la 

solución general para la ecuación de campo transformada establecida por Doyle (1966) utilizando 

la  representación  de  Iacovache.  Para  un  punto  x  que  dista  una  distancia  r  del  punto  de 

aplicación  ξ , el desplazamiento en dirección  k  para una carga aplicada en dirección  l  viene 

dado por: 

u lk
*
(x ,ξ ,ω)=

1
4 πG

(Ψ δlk−χ r , l r , k )  (91)

Ψ =∑
m=1

2

[1−( z1

z2)
2

δm1][ 1
zm

2 r 2−
1

z m r
+δm2]E m  (92)

χ =∑
m=1

2

[1−( z1

z2)
2

δm1][ 3
zm

2 r 2−
3

z m r
+1]Em  (93)

donde: 

Em=
1
r

e−i kmr ; r=∣x−ξ∣; z 1=−i k1 ; z 2=−i k 2  (94)

Con la solución en desplazamientos (92) y (93) y la ley de comportamiento del material, es 

posible obtener las tensiones para una superficie de normal n :

t lk
*
( x ,ξ ,ω)=

1
4 π [ ∂ r

∂n
(Aδlk+B r, l r , k )+(A r ,k nl+C r ,l nk )]  (95)
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donde: 

A=
dΨ
dr
−
χ
r

 (96)

B=2(2 χr −
d χ
dr )  (97)

C=λμ (dΨ
dr
−

d χ
dr
−2
χ

r )−2
χ

r
 (98)

2.6.2.2  Solución fundamental poroelástica armónica

En el caso de medios poroelásticos, la carga puede estar aplicada en la fase sólida o en la  

fluida. Según la respuesta que se considere se obtendrá una formulación distinta. A continuación se 

muestra esta. Un estudio pormenorizado para su obtención puede verse en Domínguez (1993) o 

Aznárez (2002). 

Estando la carga aplicada en dirección  l  en la fase sólida se obtiene esta respuesta en 

desplazamiento de la matriz sólida en dirección k :

u lk
*
(x ,ξ ,ω)=

1
4 πG

(Ψ̃ δlk−χ̃ r , l r , k )  (99)

Con la misma carga se obtiene esta respuesta en tensión equivalente en la fase fluida: 

τl
*
(x ,ξ ,ω)=

iωη
4π

[ϕ̃ r ,l ]  (100)

Si  lo  que  hay  es  una  fuente  puntual  en  la  fase  fluida  se  obtiene  esta  respuesta  en 

desplazamientos del sólido en la dirección k  :

uok
*
(x ,ξ ,ω)=

γ

4π
ϕ̃r , k  (101)

Con la misma fuente puntual se obtiene esta respuesta en tensión equivalente en la fase  

fluida: 

τo
*
(x ,ξ ,ω)=

1
4π
[κ̃]  (102)

siendo: 

Ψ̃ =∑
m=1

3

[(−1)m
G

(λ+2G) z21

(i ω
K
− zm

2
)(δm1+δm2)+δm3][ 1

z m
2 r2−

1
zm r
+δm3]Em  (103)
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χ̃ =∑
m=1

3

[(−1)m
G

(λ+2G) z21

(i ω
K
−z m

2
)(δm1+δm2)+δm3][ 3

z m
2 r2−

3
zm r
+1]E m  (104)

ϕ̃=∑
m=1

2

[ (−1)m+1

(λ+2G) z21

z m][ 1
zm r

−1]Em  (105)

κ̃=∑
m=1

2
(−1)m+1

z21
[ G
λ+2G

z3
2− zm

2 ]Em  (106)

Esta  formulación  representa  la  solución  fundamental  poroelástica  en  términos  de  las 

variables fundamentales:  los desplazamientos de la fase sólida y tensión equivalente en la fase 

fluida.

Además,  se  añade  la  solución  fundamental  poroelástica  en  términos  de  las  variables 

derivadas vector tensión de la fase sólida y desplazamiento normal en la fase fluida asociados a una  

superficie con  vector normal exterior n .

Estando la carga aplicada en dirección  l  en la fase sólida se obtiene esta respuesta en 

tensión de la matriz sólida en dirección k :

t lk
* ( x ,ξ ,ω)=

1
4 π [ ∂ r

∂n
( Ãδlk+B̃ r, l r , k )+( Ã r ,k nl+C̃ r ,l nk )]  (107)

Con una fuente puente en la fase fluida se obtiene este vector tensión en la fase sólida en 

dirección k :

t ok
*
(x ,ξ ,ω)=

γ

4π [ ∂ r
∂n

F̃ r , k+G̃ nk]  (108)

Con una carga aplicada en dirección l  en la fase sólida se obtiene esta respuesta en tensión 

de la fase fluida:

U nl
*
( x ,ξ ,ω)=

1
4π [ ∂r

∂n
D̃ r , l+Ẽ n l]  (109)

Con una fuente en la fase fluida se obtiene esta respuesta en la fase fluida: 

U no
*
−J X l

' n l=
1

4π
∂ r
∂n

H̃  (110)

siendo: 

Ã=
dΨ̃
dr
−
χ̃

r
 (111)

28



Formulación en Elastodinámica lineal y Poroelasticidad armónica

B̃=2(2 χ̃r −
d χ̃
dr )  (112)

C̃= λ
G (d Ψ̃

dr
−

d χ̃
dr
−2

χ

r )−2
χ̃

r
+

Q
R

iωηϕ̃  (113)

D̃=iωη J (d ϕ̃
dr
−
ϕ̃

r )− Z
G
χ̃  (114)

Ẽ=iωηJ
ϕ̃

r
+

Z
G
ψ̃  (115)

F̃=2G(d ϕ̃
dr
−
ϕ̃

r )  (116)

G̃=λ(d ϕ̃
dr
+2
ϕ̃

r )−2μ
ϕ̃

r
+

Q
Rγ
Κ̃  (117)

H̃=J
d Κ̃
dr
+Z γϕ̃  (118)

Em=
1
r

ezm r ; r=∣x−ξ∣; zm=−i k m(m=1,2 ,3); z21=z 2
2
−z1

2
 (119)

2.6.3 Formulación integral en el contorno

La  resolución  del  problema  planteado  (según  el  medio  a  estudiar,  elástico  o 

poroelástico) requiere aplicar las ecuaciones (87, elástico), o (88 y 89, poroelástico). Dado  

que la técnica numérica empleada será el MEC solo será necesario discretizar los contornos.  

Con  las  ecuaciones  integrales  de  contorno  y  conociendo  las  soluciones  fundamentales  es  

posible, aparentemente, obtener solución. 

Sin  embargo,  directamente  no  es  posible  pues  justo  en  los  nodos  aparecen 

singularidades  que  harían  fracasar  el  procedimiento.  Por  tanto,  deberán  ser  tratadas.  El  

procedimiento para solventar este problema es subdividir el  contorno  Γ  sobre el  nodo en 

otros dos Γ−Γε  y Γε .

Para ver el procedimiento se utilizará la ecuación (70) y subdividiendo se obtiene: 

u l
i
+∫Γ−Γε tlk

* uk d Γ+∫Γε t lk
* uk d Γ=∫Γ−Γε ulk

* t k d Γ+∫Γ ε ulk
* t k d Γ  (120)
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Ahora  se  procede  a  ver  qué  ocurre  cuando  ε→0 .  Las  integrales  que  tienen  los 

contornos Γ−Γε  no encierran la singularidad. Así, será posible obtener su valor como: 

lim
ε →0
∫Γ−Γε tlk

* uk d Γ=CPV∫Γ t lk
* uk d Γ  (121)

lim
ε →0
∫Γ−Γε u lk

* t k d Γ=CPV∫Γ ulk
* t k d Γ  (122)

donde CPV  es el Valor Principal de Cauchy (Doblaré y otros, 1998).

Para los términos donde están las singularidades se obtiene:

lim
ε →0
∫Γε ulk

* t k d Γ=0  (123)

u l
i
+lim
ε →0
∫Γε t lk

* uk d Γ=clk
i uk

i
 (124)

donde c lk
i , llamado término libre, es una constante que depende de la geometría del contorno 

en el punto de aplicación de la carga  ξ  y  ν .  Por tanto, reordenando la ecuación integral 

después de aplicar límites a ambos lados de la expresión se obtiene:
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c lk
i uk

i
+∫Γ t lk

* uk d Γ=∫Γ u lk
* t k d Γ  (125)

que en forma matricial es:

c i u i
+∫Γ p* u d Γ=∫Γ u* pd Γ  (126)

donde u  y p  serán los vectores de las variables de campo, u*  y p*  los tensores de la solución 

fundamental y c i  el tensor del término libre elastostático en el punto de colocación  c i
=I  si se 

trata de puntos internos: 

c i
=[

c11
i c12

i c13
i

c21
i c22

i c23
i

c31
i c32

i c33
i ]  (127)

Por último, en el caso de medios poroelásticos, operando de la misma manera y partiendo 

de las ecuaciones (88) y (89) se llega a una ecuación del tipo (126) siendo en este caso: 

c i
=[

c11
i c12

i c13
i 0

c21
i c22

i c23
i 0

c31
i c32

i c33
i 0

0 0 0 −J c i]  (128)

siendo c i   un valor que depende de la geometría del contorno en x i , del módulo de Poisson del 

material drenado y del valor:

J=
1

iωb−ω2
ρ22

 (129)
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Capítulo 3 

El Método de Elementos de Contorno (MEC)

3.1 Introducción

El Método de los Elementos de Contorno (MEC) es una técnica numérica que usa una  

formulación  integral  sobre  los  contornos de  un dominio [Domínguez  (1993)].  De  esta  manera 

permite obtener las incógnitas del problema a resolver. 

Este  método  emplea  dos  formulaciones.  La  directa,  la  cual  contiene  como  incógnitas 

básicas,  cantidades  con  un  claro  significado  físico,  y  en  términos  de  las  cuales  se  dan  las 

condiciones de contorno conocidas, y la indirecta, que se caracteriza porque  las incógnitas básicas 

no tienen un significado concreto, pero de ellas se pueden obtener las variables físicas. 

En la formulación directa las incógnitas son las variables básicas de campo y sus derivadas, 

las  cuales  también  poseerán  un  significado  físico,  pero  referidas  siempre  a  sus  valores  en  el  

contorno. Al igual que en el MEF, se deberá discretizar, pero, en este caso, se procederá solo sobre 

el contorno. Se deberán utilizar funciones de aproximación siendo la solución final más precisa 

cuanto  mayor  sea  el  orden  del  polinomio  empleado.  Obviamente,  esto  tendrá  un  coste 

computacional y siempre será un compromiso entre precisión y velocidad de cálculo. 

Dado que solo se discretizan los contornos, el sistema de ecuaciones a resolver es menor  

que en el MEF. Sin embargo, el sistema no es simétrico. Por otra parte, el MEC tiene dificultades  

para tratar propiedades no lineales. Así, si el problema a resolver es altamente no lineal, se tendrán 

problemas para tratar adecuadamente tales características. 

Tanto el MEF como el MEC son técnicas numéricas muy poderosas y dependiendo del  

tamaño del dominio a discretizar se deberá escoger, preferente un método sobre el otro. La clara 

indicación del MEC es cuando el dominio a discretizar sea infinito o seminfinito. En otro caso  

distinto a este, el MEF presenta ventajas sobre el MEC. 
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 Esta importante característica, unida al hecho de que la mayoría de los análisis dinámicos 

se limitan al  comportamiento lineal,  con lo cual  no se presenta una de las debilidades de esta 

técnica, ha hecho del MEC la alternativa numérica más adecuada para el estudio de importantes 

campos de la ingeniería, tales como el problema de la interacción dinámica suelo-estructura, como 

en el caso de este TFM.

3.2 Discretización de contornos

Para aplicar las ecuaciones integrales primero se deben discretizar los contornos. Así, tales 

contornos  se  subdividirán  en  NE  elementos,  aproximando  las  variables  a  obtener  mediante 

funciones de interpolación. 

Sobre un elemento genérico j  se tiene:

u=Φu j  (130)

p=Φ p j  (131)

donde u j y p j  son vectores de αNJ  componentes y Φ  es una matriz de dimensión α xαNJ

que está formada por funciones de forma del elemento  NJ  en el nodo del elemento  J  siendo 

α=3 para viscoelásticos y α=4  para poroelásticos.

La geometría del elemento se aproximará como: 

x=Φ x j  (132)

donde x j  contiene las 3 NJ  coordenadas de los nodos del elemento j . Para este TFM se 

han empleado elementos triangulares y cuadrangulares cuadráticos (polinomios de segundo 

orden). 
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La ecuación general obtenida después de discretizar los contornos es: 

c i u i+∑
j=1

NE

[∫
Γ j

p*Φ d Γ]u j=∑
j=1

NE

[∫
Γ

u*Φ d Γ] p j  (133)

siendo  Γ j  la superficie del contorno asociado al elemento  j .  Aplicando las cargas o fuentes 

sobre los nodos se obtiene una ecuación matricial del tipo: 

H u=G t  (134)

donde u  y t  son los vectores que contienen los valores nodales del problema. Además, H  y G  

son los llamados coeficientes integrales. Una vez aplicadas las condiciones de contorno se obtiene 

el sistema:

A X=F  (135)

donde X  es el vector de incógnitas ( u  o p ) y F  se obtiene de multiplicar H  y G  por las 

componentes conocidas de u  y p  respectivamente.

3.3 Evaluación de las integrales

De la ecuación (133)  se observan estos términos cuya igualdad es: 

GW ij
=∫Γ j

u*
Φd Γ  (136)

HW ij
=∫Γ j

p*
Φ d Γ  (137)

Cuando se  colocan las  cargas  sobre  los  nodos pueden darse  dos  casos.  Si  el  nodo de 

aplicación  i  no forma parte  del  elemento  j  las ecuaciones  (136)  y (137) se  podrán evaluar 

numéricamente. Teóricamente, cualquier método de integración numérica es válido. Sin embargo,  

el método que suele emplearse es la integración gaussiana debido a la alta eficiencia computacional  
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que tiene. 

Por  otro  lado,  habrá  que  realizar  una  transformación  del  sistema  de  referencia.  Los 

elementos tienen un sistema de referencia el cual es distinto al sistema de referencia que tiene el  

elemento que forma los contornos. 

El operador matemático que permite tal transformación es el conocido jacobiano: 

∣J A∣=√[ ∂ x2

∂ξ1

∂ x3

∂ξ2
−
∂ x3

∂ξ1

∂ x2

∂ξ2 ]
2

+[∂ x3

∂ ξ1

∂ x1

∂ ξ2
−
∂ x1

∂ ξ1

∂ x3

∂ξ2 ]
2

+[∂ x1

∂ ξ1

∂ x2

∂ ξ2
−
∂ x2

∂ξ1

∂ x1

∂ξ2 ]
2

 (138)

que introducido en las ecuaciones anteriores se obtiene:

GW ij
=∫ξ1
∫ξ2

u*
Φ∣J A∣d ξ1 d ξ2  (139)

HW ij
=∫ξ1
∫ξ2

p*
Φ∣J A∣d ξ1 d ξ2  (140)

Con  la  introducción  del  jacobiano,  las 

ecuaciones (139) y (140) ya son evaluables. 

Dado  que  se  ha  optado  por  integración 

gaussiana los límites de integración serán -1 

y 1 para elementos cuadrangulares y 0 y 1 

para  triangulares.  Para  el  segundo  caso, 

cuando el  segundo punto de colocación  i  

forma parte del elemento j  sobre el que se 

va a integrar, tanto u*  como p*  presentan 

singularidades  del  tipo  O(
1
r
)  o  O(

1

r 2
) . 

Así,  no  será  posible  integrar  directamente. 

Dependiendo del orden de la singularidad, su 

tratamiento aumentará en complejidad.

3.3.1.1 Integración cuando la singularidad es del tipo O(
1
r
)

La  evaluación  de  este  tipo  de  términos  se  consigue  con  un  cambio  del  sistema  de 

referencia. Así, la condición será que el jacobiano de transformación de un sistema a otro sea de  

orden  O(r ) .  Existe  bibliografía  detallada sobre  estos  procedimientos  como Lachat  (Lachat  y 
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otros,  1976),  Telles  (1987),  y  Cerrolaza  (Cerrolaza  y  otros,  1989),  por  ejemplo.  También,  la 

aplicación detallada sobre elementos cuadriláteros puede verse en detalle en Maeso (1992) y sobre 

elementos triangulares en Domínguez (1993).

3.3.1.2 Integración cuando la singularidad es del tipo O(
1

r 2
)

Existe una amplia bibliografía que trata este tema. No entra dentro de los objetivos de este 

TFM su desarrollo profundo. Se puede consultar, por ejemplo, Brebbia (Brebbia y otros, 1992), Li  

(Li y otros, 1985) o Giuggiani (Giuggiani y otros, 1987). 

El código Multifebe lleva incorporado un método en el cual la singularidad es “ficticia” al  

desvanecerse  a  medida  que  se  incorporan  las  contribuciones  de  los  elementos  adyacentes.  La 

técnica es válida para elementos curvos de cualquier orden y tipo y se basa en la identificación 

concreta  de  los  términos  con  singularidad  fuerte,  que  serán  regularizados  directamente  en 

coordenadas cartesianas de forma conveniente para obtener una integral de superficie y otra de 

línea extendida al perímetro del elemento, ambas no singulares y evaluables mediante cuadratura 

estándar. La aplicación del procedimiento citado puede verse en detalle en Chirino (Chirino y otros, 

2000) y Aznárez (2002).

3.4 Condiciones de contorno y formulación en las interfases

Para poder  resolver  las  ecuaciones  diferenciales  es  necesario imponer  una serie  de 

condiciones de contorno. Dado que no hay dependencia temporal, no será necesario imponer  

condiciones iniciales. Así, se definirá el vector tensión para un sólido viscoelástico como:

t i
s
( x ,ω)=σij

s
( x ,ω)n j( x ); x∈Γ  (141)

donde σij
s  es el tensor de tensiones del sólido 

Para el esqueleto sólido de una región poroelástica será:

t i
s
( x ,ω)=τ ij

s
( x ,ω)n j( x ) ; x∈Γ  (142)

donde τij
s  es el tensor de tensiones equivalente del esqueleto sólido 

Por último, si se trata de una región poroelástica será:

t i
p
( x ,ω)=t i

e
( x ,ω)+τ ij

s
(x ,ω)n j( x) ; x∈Γ  (143)
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3.4.1 Condiciones exteriores 

En general, habrá un contorno  Γ1  donde serán conocidas las variables fundamentales y 

otro Γ2  donde serán dato las variables derivadas. 

Para sólidos viscoelásticos, en los que el desplazamiento es la variable fundamental y la 

tensión es la derivada: 

u i
s
=ūi

s ; en Γ1  (144)

t i
s
=t̄ i

s ; en Γ2  (145)

donde Γ1∪Γ2=Γ y Γ1∩Γ2=∅

Para el caso de medios poroelásticos, las variables fundamentales serán el desplazamiento 

en el esqueleto sólido ue  y la tensión equivalente en el fluido τ . Las derivadas serán el tensor en 

el esqueleto sólido t e  y el desplazamiento normal al contorno del fluido U n . 

Además, los contornos pueden ser permeables (permite el paso del fluido) o impermeables  

(no lo permite). En los primeros la presión de poro es cero (τ=0) . Así, será posible obtener el 

desplazamiento de la  fase  sólida  u i
e
=ū i

e  o  la  tensión  equivalente  sobre  ella  t i
e
=t̄i

e .  Si  fuera 

impermeable, las normales en ambas fases serían iguales un
e
=U n

e . Por tanto, un
e
=U n=ūn  y las 

incógnitas serían las tensiones equivalentes en ambas fases . O será conocida la tensión total sobre 

el contorno t i
p
= t̄i

p  y el desplazamiento incógnita. 

3.4.2 Condiciones en las interfases

De lo visto hasta ahora se desprende que habrán distintas condiciones de interacción según 

los medios que actúen. Esa interacción deberá cumplir las ecuaciones de equilibrio de tensiones y 

compatibilidad de desplazamientos de ambos medios en todo el contorno.

Habrán tres posibilidades de interacción de los modelos vistos: viscoelástico-viscoelástico, 

viscoelástico-poroelástico y poroelástico-poroelástico.

Para sólidos viscoelástico ( s1 ) - viscoelástico ( s2 )  la ecuación de equilibrio será:

t s1+t s 2=0  (146)

Y la de compatibilidad: 

us1=us2  (147)

Para sólidos viscoelástico ( s ) - poroelástico ( p ) la ecuación de equilibrio será:

t s
+t e
+τ n p

=0  (148)
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Y la de compatibilidad: 

u s
=ue y ue n p

=U n
p Contorno impermeable

u s
=ue Contorno permeable

 (149)

Para poroelástico ( p1 ) - poroelástico ( p2 )  la ecuación de equilibrio será:

τ
p1

ϕ
p1

=
τ2

p

ϕ
p2

t p1+τ
p1 n p1+t p2+τ

p 2 np 2=0

 (150)

Y la de compatibilidad: 

ue1=ue2

ϕ
p1[U n

p1−ue1 n p1]+ϕ
p2[U n

p2−ue2 np2]=0
 (151)

3.4.3 Estrategias a seguir en la colocación de nodos

Se han visto las ecuaciones que rigen los problemas planteados y no es difícil ver que la  

resolución  de  estos  tipos  de  problemas 

presentan  muchas  dificultades.  Las 

ecuaciones  integrales  a  resolver  pueden 

presentar singularidades que es necesario 

tratar.  También,  según  los  medios  de 

interacción  habrán  unas  condiciones  de 

contorno  distintas.  Además,  según  la 

geometría del modelo quizás sea necesario 

aumentar  el  grado de  los  elementos  que 

serán  utilizados  para  discretizar  para 

obtener así una buena convergencia.  

Pues con todo lo visto hasta ahora, 

todavía  falta  una  cuestión  más  a  añadir, 

esto  es,  qué  pasa  cuando  un  nodo  es 

compartido  por  dos  o  más  elementos. 

Cuando se presenta esto,  habrán vectores normales asociados distintos lo que implica una falta de  

continuidad en las tensiones o flujos (derivadas de la variables primarias). Por otro, un nodo puede 

pertenecer a regiones de distinta naturaleza lo que conlleva a que presente distinto número de 

grados de libertad si se considera como perteneciente a una u otra región.
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Una  manera  de  resolver  esto  es  duplicando  nodos,  es  decir,  que  cada  elemento  o  

contorno tenga su “propio” nodo. Así,  se podrán imponer las condiciones que se necesiten  

independientemente  a  cada  nodo.   Esta  técnica  se  empezó  a  emplear,  primero  en  2D por 

Medina (1987) , y luego en 3D por Maeso (1992). Tiene el inconveniente de que aumenta el  

número de grados de libertad del sistema de ecuaciones a resolver. No obstante, es un precio  

más  que  razonable  a  pagar  para  evitar  los  inconvenientes  que  se  podrían derivar  si  no se 

utilizara esta técnica.

Si  se  tiene  una  variable  primaria  u  y  otra  derivada  t ,  dado  que  se  duplicará  se 

tendrá ( u1 , u2 ) y ( t 1 , t 2 ) por lo que la ecuación integral discretizada en el nodo duplicado 

presentará la siguiente relación: 

h11u1+h12u2−g11 t 1−g 12t 2+.....= f̄
h21 u1+h22u2−g 21 t 1−g22 t 2+.....= f̄

 (152)

donde en h11  y h22  se incluye el término libre y en f̄  se recoge el producto de los valores 

impuestos  ( ū , t̄ )  en todo el contorno y los coeficientes de integración correspondientes. 

En general, este procedimiento resuelve muchos de los problemas que se pueden plantear. 

Sin embargo, cuando los desplazamientos son iguales u1=u2=ū  el sistema (153) es singular. La 

manera de resolver esto por los mismos autores ha sido desplazar ligeramente uno de los nodos.  

Así, el sistema ya no será singular. Este procedimiento se llama “colocación no nodal”. Además,  

con este procedimiento se pueden tratar discretizaciones no conformes. 

La ecuación (125) queda modificada como sigue: 

c i
Φuk

+∑
j=1

NE

[∫
Γ j

p*
Φd Γ]u j

=∑
j=1

NE

[∫
Γ

u*
Φ d Γ] p j  (153)

siendo  uk  el  vector  de  desplazamientos  nodales  del  elemento  Γk  y  Φ  la  matriz  de 

funciones de forma particularizada para las coordenadas (ξ̄1, ξ̄2)  del punto de colocación. El 

término libre  siempre  será  c lk
i
=0,5δlk . Para un análisis  más  profundo consultar  Chirino 

(Chirino y otros, 2000) y Aznárez (2002). 
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Interacción suelo-estructura

4.1 Introducción

En  este  capítulo  se  expondrán  los  fundamentos  de  la  interacción  suelo-estructura,  

explicando  la  formulación  que  se  empleará  para  obtener  las  distintas  impedancias  que  

modelizarán  dicha  interacción.  Para  un  análisis  en  mayor  profundidad,  consultar  Gracia  

(2002). 

Como ya se ha dicho, el objetivo de este TFM es obtener relaciones de interacción 

entre la zapata de un aerogenerador y el suelo. Esta relación se modelizará como un muelle y  

un  amortiguamiento  por  cada  desplazamiento  y  por  cada  giro.  Obtenida  esta  relación  es 

posible  ver  su  comportamiento  dinámico  (respuesta)  cuando  es  sometida  a  una  carga  de  

entrada (excitación). 

4.2 Matriz de impedancias

En un modelo  3D habrán  tres  desplazamientos  y  tres  giros.  Así,  los  nombre  serán 

impedancia vertical  K z , impedancias horizontales K x  y K y , impedancia de torsión K ϕz  

e impedancias de cabeceo K ϕ x  y K ϕ y .

Para  excitaciones  armónicas  con  frecuencia  ω ,  la  matriz  de  rigidez  dinámica  se 

define como la matriz que relaciona el vector de fuerzas (fuerzas y momentos) aplicados a la  

cimentación y el vector de desplazamientos (desplazamientos y giros) resultante, cuando la  

cimentación se asume que es sin masa. 

Matemáticamente, la matriz de rigidez es la siguiente:
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{
Rx

R y

Rz

M xx

M yy

M zz

}=[
K x K xy K xz K xϕ1

K x ϕ2
K xϕ3

K yx K y K yz K yϕ1
K y ϕ2

K y ϕ3

K zx K zy K z K zϕ
1

K zϕ
2

K zϕ
3

K ϕ1 x K ϕ1 y K ϕ1 z K ϕ1
Kϕ1 ϕ2

K ϕ1ϕ3

K ϕ2 x K ϕ2 y K ϕ2 z K ϕ2ϕ1
Kϕ2

K ϕ2ϕ3

K ϕ
3

x K ϕ
3

y K ϕ
3

z K ϕ3ϕ1
Kϕ3ϕ2

Kϕ3

]{
ux

u y

uz

ϕ1

ϕ2

ϕ3

}  (154)

Los términos K  que aparecen en (154) son las impedancias del sistema representado. Si 

se asume un desplazamiento o giro unitario se observa que los valores de las fuerzas o momentos  

serán precisamente las impedancias. Este es el procedimiento que se seguirá para obtenerlas. 

Las impedancias se componen de una parte real y otra imaginaria llamándose a la parte real  

rigidez y a la imaginaria amortiguamiento. Obviamente, sus valores dependerán de la frecuencia 

ω . 

K ij (ω )=Re (K ij )+i⋅Im(K ij )  (155)

La parte real de la rigidez se relaciona a las propiedades de rigidez e inercia del suelo. La  

parte imaginaria muestra el amortiguamiento del sistema. El principal efecto del amortiguamiento 

es  debido  a  la  energía  disipada  por  las  ondas  propagándose  lejos  de  la  cimentación 

(amortiguamiento por radiación). Es obvio que desde que esta clase de amortiguamiento se asocia a 

la radiación de onda, debe emplearse un modelo de semiespacio (elástico y lineal, u otro modelo) 

que permita representar este fenómeno. Además del amortiguamiento por radiación, generalmente 

también existirá un amortiguamiento debido al material (histerético).

El amortiguamiento por radiación es altamente dependiente de la frecuencia. Debido a esto, 

las componentes de la rigidez usualmente se escriben como:

K ij (ω )=K 0ij⋅( k ij+i⋅a0⋅cij )  (156)

donde K ()ij  es el valor estático de la componente ij  de la rigidez, k ij  y c ij  son los coeficientes 

dependientes  de  la  frecuencia,  a0=
ω⋅B
cs

 es  la  frecuencia,  B  es  la  longitud  característica 

(semiancho  o  diámetro)  de  la  cimentación,  y  cs  es,  normalmente,  la  velocidad  de  la  onda 

transversal.

Cuando el amortiguamiento del material existe en un intento de aislar el efecto de estos 

tipos diferentes de amortiguamientos, se escribe la rigidez dinámica en la forma siguiente:
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K ij (ω )=K 0ij⋅( k ij+i⋅a0⋅cij )⋅(1+2i ξ )  (157)

donde  ξ  es  la  relación  de  amortiguamiento (histerético).  Los coeficientes  k ij  y  c ij  todavía 

dependen de la rigidez del material; sin embargo, para sedimentos de suelo profundos y valores de 

ξ  típicos, esta dependencia es pequeña.

Para  llevar  a  cabo  la  discretización  de  la  representación  integral,  una  vez  dividido  el  

contorno en esa serie de elementos, se descomponen las integrales sobre el contorno en integrales  

sobre cada uno de dichos elementos, de forma que si existen  NE  elementos, la representación 

integral del MEC se puede expresar como:

c lk
i ⋅uk

i=∫Γ
ulk

*⋅pk dΓ−∫Γ
p lk

*⋅uk dΓ  (158)

Ahora  se  procederá  a  aplicar  la  fórmula 

(158) sobre la figura 12. El contorno Γ1  es 

el de la interacción zapata-suelo. El contorno 

Γ2  es  la  superficie  libre  y  el  Γ3  es  el 

semiespacio. 

Para  un  punto  i  perteneciente  a  las 

superficies Γ1  o Γ2 , la representación integral en la forma dada será:

c lk
i ⋅uk

i={∫Γ1
u lk

*⋅pk dΓ−∫Γ 1
p lk

* uk dΓ }+{∫Γ 2
ulk

* pk dΓ −∫Γ 2
p lk

* uk dΓ }+
+{∫Γ3

u lk
* pk dΓ−∫Γ 3

plk
* uk dΓ }

 (159)

A partir de las condiciones de regularidad y radiación, se puede demostrar que la integral 

sobre Γ3  se hace cero. Se puede ver en Kupradze (1963) o  Eringer (Eringer y otros, 1975).

Por otro lado, si se discretizan las superficies Γ1  y Γ2  en elementos y nodos, y se aplica 

(159) en función de las variables de campo en dichos nodos, se tiene:

c i ui
={∑

j=1

NE1

[∫
Γ1

j u
*
Φd Γ]⋅p j

−∑
j=1

NE1

[∫
Γ1

j p*
Φd Γ]⋅u j

}

+{∑
j=1

NE2

[∫Γ2
j u

*
Φd Γ]⋅p j

−∑
j=1

NE2

[∫Γ2
j p*
Φd Γ]⋅u j

}

+{ ∑
j=NE2+1

∞

[∫Γ2
j u

*
Φd Γ]⋅p j

− ∑
j=NE2+1

∞

[∫Γ2
j p*
Φ d Γ]⋅u j

}

 (160)

donde NE 1  es el número de elementos situados sobre la superficie Γ1 ; NE 2  es el número de los 

elementos de  Γ2  más cercanos a  Γ1 , habiéndose considerado separadamente la integral sobre 

Γ2  a  partir  del  elemento  NE 2 .  Esta  última  integral  será  tratada  de  forma  particular  en  el 

problema del cálculo de las rigideces de la cimentación. 
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Si el medio estuviera formado por una serie 

de  subdominios  de  propiedades  distintas 

(estratos),  su geometría será normalmente de 

un tipo de la figura 13. En estos casos basta 

plantear  la  representación  integral  para  cada 

uno  de  los  contornos  de  los  subdominios 

considerados  y  efectuar  el  acoplamiento 

mediante las ecuaciones de equilibrio y compatibilidad en las interfases estrato-estrato. 

4.3 Cálculo de impedancias

El modelo seguido será considerar la zapata como un sólido rígido.  Esta consideración 

simplifica enormemente los cálculos y el error cometido es más que asumible. Así, obteniendo los 

resultados sobre un punto será suficiente para obtener el resultado del conjunto pues las distancias 

entre los distintos puntos siempre será constante. 

Sea un vector de desplazamientos u  de un punto cualquiera de coordenadas (x i , y i , z i) , 

uc  un vector de desplazamientos como sólido rígido de la cimentación para un punto de referencia 

(xr , yr , zr)  y L  una matriz de transformación que depende de la posición del punto de cálculo:

u=(ux , u y , uz )
T

uc=( ux
c , u y

c , uz
c , θ x

c , θ y
c , θ z

c)T

L=[
1 0 0 0 ( z i− zr ) ( yr− y i )

0 1 0 ( z r−zi ) 0 ( x i−xr )

0 0 1 ( yi− yr ) ( xr−x i ) 0 ]
 (161)

Dados  los  desplazamientos  y  giros  como  sólido  rígido  de  la  cimentación,  los 

desplazamientos del punto de cálculo del movimiento podrán expresarse mediante: 

u=Luc  (162)

Si se calculan las tracciones que la cimentación ejerce sobre el terreno en aquel contorno en 

el que ambos se hallan en contacto (la interfase cimentación-terreno, denominada Γ1 ), se podrá 

obtener la resultante de las tracciones en el punto de referencia, mediante la integración de las  

mismas sobre dicha superficie:

Rc=∫Γ 1
LT⋅p dΓ  (163)

donde LT  es la matriz traspuesta de la matriz L  anterior y p  es el vector tensión en cada punto 

44

Figura 13: Terrenos no homogéneos



Interacción suelo-estructura

de la cimentación. Si se supone la superficie  Γ1  discretizada en  NE 1  elementos, cada uno de 

ellos con N j  nodos, la expresión anterior será:

Rc=∑
j=1

NE1

∑
i=1

N j

(LT⋅p i⋅ϕi )  (164)

La resultante será: 

Rc
=(Rx

c , Ry
c , Rz

c , M x
c , M y

c , M z
c
)
T

 (165)

y corresponde a la carga que es necesario aplicar sobre la cimentación para producir en ella un 

movimiento determinado, definido inicialmente.

La  resultante  de  esfuerzos,  y  los  desplazamientos  y  giros  como  sólido  rígido,  están 

relacionados mediante la expresión: 

Rc
=K⋅uc  (166)

definiéndose cada uno de sus términos K ij  como la resultante de las tensiones en la dirección i , 

en un punto de referencia r=( xr , y r , z r) , que se producen sobre la cimentación al aplicar a esta 

un desplazamiento o giro según j  como sólido rígido unitario, supuesto este movimiento referido 

a idéntico punto que la resultante.

Normalmente, el punto de referencia respecto al cual se aplican los desplazamientos y giros 

como  sólido  rígido  se  elige  en  las  coordenadas  X 1  y  X 2  del  centro  de  gravedad  de  la 

cimentación y en la coordenada X  del fondo de esta. 

Para obtener las impedancias se impondrá la condición de tensión nula sobre el contorno 

Γ2  (superficie libre) y se aplicará un desplazamiento o giro unitario sobre el contorno Γ1 . Así, se 

podrá plantear para cada nodo una relación  de desplazamiento como (160) , y el conjunto formará 

un sistema de ecuaciones teniendo como incógnitas los desplazamientos en la superficie libre del 

suelo y las tensiones sobre la interfase,  o lo que es  lo mismo,  sobre la cimentación.  Una vez  

conocidas estas tensiones se podrá calcular su resultante respecto al punto de referencia con lo cual  

se obtiene la columna de la matriz de rigidez de la cimentación correspondiente al movimiento 

impuesto.

Debido a  que  la  excitación del  problema se  encuentra  confinada  en la  cimentación es 

razonable pensar que la contribución de las sucesivas integrales sobre la superficie  Γ2  se hace 

menor  a  medida  que  el  punto  sobre  el  cual  se  integra  se  aleja,  ya  que  las  tensiones  y  

desplazamientos correspondientes a la solución fundamental son respectivamente de orden 
1

r2  y 
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1
r

 siendo r  la distancia entre los puntos de aplicación de la carga puntual armónica (estado de 

Stokes) y de cálculo del movimiento o tensión.

Si se plantea la ecuación (160) para un nodo i  cualquiera de la interfase o de la superficie 

libre de tensiones se tendrá:

c i u i
={∑

j=1

NE1

[∫
Γ1

j u
*
Φ⋅J⋅d ξ ]⋅p j

−∑
j=1

NE1

[∫
Γ1

j p*
Φ⋅J⋅d ξ]⋅u j

}

+{−∑
j=1

NE 2

[∫Γ 2
j p*
Φ⋅J⋅d ξ]⋅u j

}

+{− ∑
j=NE2+1

∞

[∫Γ2
j p*
Φ⋅J⋅d ξ]⋅u j

}

 (167)

que puede escribirse como: 

c i
⋅ui
=I Γ 1

− I Γ
2

o
−I Γ

2

∞
 (168)

Si se supone que la discretización sobre  Γ2  se lleva lo bastante lejos de la cimentación 

como para que se cumpla que: 

I Γ 2

∞ << I Γ
2

o ; I Γ
2

∞ << I Γ
1

 (169)

se podrá despreciar la contribución de 

2

I  en (168).

En general, para obtener impedancias verticales es suficiente con relaciones 4E , mientras 

que para el resto suele ser suficiente con 10E  siendo E  el enterramiento de la zapata.
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Verificación  con  resultados  de  Abascal  y  Domínguez  

[Domínguez y otros, 1993] para semiespacio viscoelástico

5.1 Descripción general del problema

Según lo comentado anteriormente, la división de Mecánica de los Medios Continuos y 

Estructuras  del  Instituto  Universitario  de  Sistemas  Inteligentes  y  Aplicaciones  Numéricas  en 

Ingeniería (IUSIANI) dispone de un software basado en el Método de Elementos de Contorno 

(MEC), el cual será el utilizado en este TFM. Se trata del software  Multifebe. Para validarlo se 

procederá a comparar los resultados obtenidos por este con los obtenidos por Domínguez en un  

problema  de  cálculo  de  impedancias  y  que  se  encuentran  disponibles  en  el  libro  Boundary 

Elements in Dynamics. 

El problema consiste en obtener las impedancias vertical, horizontal, de cabeceo y torsión 

de una zapata circular de radio R=B=4 m para diferentes grados de embebimiento que descansa 

sobre  un  terreno  que  se  modelizará  como  viscoelástico.  Así,  será  suficiente  considerar  las  

siguientes propiedades:
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Propiedades

Símbolo Valor y unidades

Módulo de elasticidad transversal G 1
N

m2

Módulo de Poisson ν 0,25

Amortiguamiento ξ 0,05

Densidad ρ 1
kg

m3

Tabla 1: Propiedades del terreno viscoelástico a analizar
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Se  debe  prescribir  un  desplazamiento  o  giro  unitario  en  la  dirección  a  obtener  la  

impedancia a todos los nodos de la interfase zapata-suelo, considerando tensión nula para el resto 

de direcciones, de manera que así se calcularán las partes real e imaginaria de la flexibilidad  del  

terreno, las cuales no son otra cosa que los valores inversos de las partes real e imaginaria de la  

rigidez  dinámica,  respectivamente,  también  para  ese  grado  de  libertad.  Además,  el  

amortiguamiento  por  radiación  es  altamente  dependiente  de  la  frecuencia.  Debido  a  esto,  las 

componentes de la rigidez usualmente se escriben como:

K ij=k ij+i⋅a0⋅cij  (170)

donde k ij  son las rigideces dinámicas,  c ij  los coeficientes de amortiguamiento, a0=
ω⋅B

cs
 es la 

frecuencia  adimensional,  B  es  la  longitud  característica  (semiancho  o  diámetro)  de  la 

cimentación, y cs  es la velocidad de la onda transversal.

En la  figura  14  está  el  modelo  utilizado por  Domínguez  y  el  modelo  3D equivalente  

mallado (con doble plano de simetría). Domínguez utilizó un modelo 2D que giraba sobre un eje de 

revolución. Se trataba, por tanto, de un modelo axisimétrico. En este caso, se procederá con un 

modelo 3D del cual solo se modelizará un cuarto con dos ejes de simetría. La superficie libre se  

malló con elementos triangulares y tiene una mayor cantidad de elementos en la zona próxima a la  

cimentación. La superficie de la zapata se malló con elementos cuadrangulares con una ratio no  

mayor de 2. En todos los casos se utilizarán elementos de segundo orden.  Según Domínguez, es 

suficiente escoger un largo  A  de superficie libre de  7E .  En este caso, se procedió a imponer la 

condición más conservadora de si B>E , entonces A=10B ; si no A=10E . 
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Figura 14: Modelo axisimétrico y modelo 3D equivalente (doble simetría) con mallado
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Una  cuestión  importante  es  el 

sistema  de  referencia  y  el  punto  de 

aplicación  de  los  desplazamientos  y 

giros.  Para  impedancias  vertical, 

horizontal  y  torsión  no  afecta  al 

resultado si se considera la aplicación 

sobre la superficie superior o inferior 

de la  zapata.  Sin embargo,  sí  que lo 

hace  para  cabeceo.  El  modelo  de 

Domínguez  lo  consideró  en  la 

superficie  inferior.  Sin  embargo,  en 

este  caso  el  punto  (0,0,0)  está  en  la 

superficie  superior.  Así,  cuando  se 

tiene una fuerza aplicada en un punto, 

es posible trasladarla a otro mediante la 

misma  fuerza  y  un  par  equivalente.  Con  este  principio  básico  de  Mecánica  y  el  principio  de 

superposición podrá resolverse el problema. De las figuras siguientes (16), (17) y (18):
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Figura 15: Sistema de referencia y punto de aplicación utilizado  

por Domínguez

Figura 16: Problema horizontal. Desplazamiento de las impedancias desde el contorno superior al inferior

Figura 17: Problema de cabeceo. Desplazamiento de las impedancias desde el contorno superior al inferior.
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se obtiene la fórmula de corrección:

k ϕ ϕ
a
=[k ϕϕ

b
−k y ϕ

b
⋅E ]+[k ϕ y

c
−k yy

b
⋅E ]⋅(−E)=k ϕϕ−k y ϕ⋅E−k ϕ y⋅E+k yy⋅E

2  (171)

Esta será la fórmula de corrección para pasar de la superficie superior de la zapata a la  

inferior en el caso de impedancia de cabeceo. 

Por  otra  parte,  los  resultados  obtenidos  por  Domínguez  no  se  disponen  en  soporte 

informático, sino en papel en forma de gráfica. Por tanto, se deberá pasar esa gráfica del papel a  

soporte informático para ser procesado en Matlab. Se utilizará un software libre para obtener una 

nube de puntos de las curvas solución de Domínguez. Luego, con Matlab se ploteará.

5.2 Resultados obtenidos

5.2.1 Impedancias verticales

En  la  figura  19  se  muestran  los  resultados  obtenidos  para  impedancia  vertical.  A la 

izquierda está  la  rigidez y a  la  derecha el  amortiguamiento.  La  leyenda  “BEM” representa  la  

solución de nuestro modelo y “Domínguez” representa la solución obtenida por ese investigador 

con el modelo axisimétrico. La rigidez dinámica está normalizada con el factor GB , mientras que 

el amortiguamiento lo está con el factor a0 G B  siendo a0  la frecuencia adimensional.

En los cuatro casos  se observa un alto grado de concordancia de resultados. A medida que 

aumenta el grado de embebimiento aumenta la rigidez y el amortiguamiento. Una diferencia es que 

se han obtenido resultados con cierto rizado. Este rizado concuerda con los resultados obtenidos 

por Apsel (1979) y aumenta en la parte real con el aumento de la frecuencia. En el caso de la parte 

imaginaria ocurre lo contrario, esto es, a medida que aumenta la frecuencia, disminuye aquel. Esto  

es debido a la normalización pues en el término divisor está la frecuencia adimensional. 

50

Figura 18: Superposición del problema horizontal y de cabeceo
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5.2.2 Impedancias horizontales

En  la  figura  20  se  muestran  los  resultados  obtenidos  para  impedancia  horizontal.  Se 

seguirán los mismos criterios que en el caso vertical, esto es, a la izquierda está la rigidez y a la 

derecha el amortiguamiento. La rigidez dinámica está normalizada con el factor GB , mientras que 

el amortiguamiento lo estará con el factor a0 G B . 

Al igual que en el caso de impedancias verticales, en los cuatro casos se observa un  
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Figura 20: Impedancia horizontal. Comparativa con resultados de Domínguez. Modelo axisimétrico vs Modelo 3D.
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Figura 19: Impedancia vertical. Comparativa con resultados de Domínguez. Modelo axisimétrico vs Modelo 3D.
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alto  grado  de  concordancia  de  resultados  y,  respecto  de  su  lectura,  siguen  las  mismas  

tendencias que en el caso vertical, esto son, un aumento de la rigidez y amortiguamiento con  

el aumento del grado de embebimiento y la aparición de cierto rizado que no se aprecia en la 

solución de Domínguez pero sí en la de Apsel.

5.2.3 Impedancias de cabeceo

Ahora se mostrarán los resultados obtenidos para cabeceo y se utilizará la fórmula de 

corrección (171)  calculada anteriormente.  Respecto de las  gráficas,  el  factor  normalizador  

será  GB3  para la rigidez dinámica y,  para el amortiguamiento,  a0 G B3 .  Además, ahora se 

plotearán dos gráficas (figuras 22 y 23). Una muestra los resultados obtenidos considerando  

el sistema de referencia arriba (origen de sistema 1), que es el que se ha utilizado para las  

otras impedancias.  La segunda muestra los resultados obtenidos cuando se corrigen con la  

fórmula (171).

 Además, como ejemplo de que se puede obtener directamente, se calculó la curva E /B=2  

sin corregir con (171), cambiando las coordenadas en el modelo que se malló (en la leyenda está 

como “BEM E/B=2 Directo”). 

Respecto de los resultados de la figura 22 (cabeceo sin corrección), se puede ver que, a 

medida que crece el grado de embebimiento, el salto se hace mayor. De la misma manera que, para 

un grado de embebimiento de E /B=0,25  se puede considerar innecesario corregir la impedancia 

pues, prácticamente, tiene el mismo valor. 
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Figura 21: Orígenes de los puntos de referencia utilizados para impedancia de cabeceo
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También se observa como la impedancia de cabeceo aumenta con el incremento del 

grado de embebimiento tanto en parte real como imaginaria, y que aparece un cierto rizado  

que  aumenta   con  el  incremento  de  la  frecuencia  en  la  rigidez  y  disminuye  en  el  

amortiguamiento. Por último, se ve que tratando adecuadamente el modelo con el generador  

de mallas se puede calcular directamente el resultado (“BEM E/B=2 Directo”).
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Figura 22: Impedancia de cabeceo. Comparativa con resultados de Domínguez utilizando el origen del sistema 1.  

Modelo axisimétrico vs Modelo 3D.
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Figura 23: Impedancia de cabeceo. Comparativa con resultados de Domínguez utilizando el origen del sistema 2.  

Modelo axisimétrico vs Modelo 3D.
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5.2.4 Impedancias de torsión

Por último, se mostrarán los resultados para torsión. 

Los factores de normalización serán los mismos que para cabeceo. Las impedancias de 

torsión son las que menos rizado presentan. Al igual que el resto, con el aumento del grado de 

embebimiento aumenta la rigidez y el amortiguamiento. También se observa que en la parte real a 

medida  que  aumenta  la  frecuencia  disminuye  la  rigidez.  En  la  parte  imaginaria  hay  una 

disminución importante al inicio y luego aumenta rápidamente con el incremento de la frecuencia. 

5.2.5 Conclusiones

Se han obtenido valores muy parecidos a los esperados por lo que el programa Multifebe 

demuestra que es adecuado para el estudio de impedancias en semiespacio viscoelástico. No se 

sabe la causa exacta, pero este código es capaz de apreciar cierto rizado que no se aprecia en la  

solución axisimétrica. Apsel (1979) también calculó este problema y obtuvo rizado en la solución 

por lo que, aparentemente, la solución correcta presenta cierta tendencia ondulante.
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Figura 24: Impedancia de torsión. Comparativa con resultados de Domínguez. Modelo axisimétrico vs Modelo 3D.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

Frecuencia, a
0

R
e(

k 
z)/

G
B

3

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

Frecuencia, a
0

Im
(k
 z)/

(a
0
 G

B
3
)

 

 

BEM E/B=0.25
Domínguez E/B=0.25
BEM E/B=0.5
Domínguez E/B=0.5
BEM E/B=1
Domínguez E/B=1
BEM E/B=2
Domínguez E/B=2



Verificación con resultados obtenidos por Aznárez, Maeso y Chirino [Aznárez y otros, 1999] en superficie poroelástica

Capítulo 6 

Verificación con resultados obtenidos por Aznárez, Maeso  

y  Chirino  [Aznárez  y  otros,  1999]  en  superficie  

poroelástica

6.1 Descripción general del problema

Hace algún tiempo, tres investigadores de esta Universidad obtuvieron una serie de  

resultados aplicando el MEC sobre superficie poroelástica, los cuales fueron publicados en el  

primer Congreso Nacional de Ingeniería Sísmica, en el año 1999  [Aznárez, J. J., Maeso, O.  

y Chirino, F., (1999), “Una Técnica Numérica para la Determinación de Rigideces Dinámicas  

de Cimentaciones sobre Suelos Saturados”. Proc. I Congreso Nacional Ing. Sísmica, Murcia].

En este capítulo se calcularán los mismos problemas con el software Multifebe, con el 

fin  de  poder  comprobar  la  validez  de  este  código.  Estos  problemas  tienen  una  dificultad 

mayor que el calculado en el capítulo anterior pues, como se verá, añade una segunda región.

Según  lo  dicho  anteriormente,  el  terreno  se  modelizará  como  poroelástico, 

disponiendo pues de una fase sólida (esqueleto) y de una fluida. Algunas propiedades serán  

fijas y otras se variarán. Las fijas serán (tabla 2):
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Las propiedades que se irán variando serán (tabla 3): 

Se obtendrán impedancias para zapata superficial, diferentes grados de embebimiento, con 
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Propiedades

Símbolo Valor y unidades

Módulo de elasticidad transversal G 3,2175⋅107 N

m2

Módulo de Poisson ν 0,25

Densidad del sólido ρs 1.425
kg

m3

Densidad del fluido ρ f
1.000

kg

m3

Porosidad ϕ 0,35

Constante de Biot (I) Q
4,61⋅108 N

m2

Constante de Biot (II) R
2,4823⋅108 N

m2

Tabla 2: Propiedades fijas para problema de validación

Propiedades

Símbolo Valor y unidades

Densidad añadida ρa ρa1
=0

kg

m3  ; ρa2
=150

kg

m3

Amortiguamiento ξ ξ1=0  ; ξ2=0,05

Constante de disipación b

b1=1,1986⋅107 N⋅s

m4  ;

b2=1,1986⋅106 N⋅s

m4  ;

b3=1,1986⋅105 N⋅s

m4  ;

b4=1,1986⋅104 N⋅s

m4  ;

b5=0
N⋅s

m4

Tabla 3: Propiedades variables para problema de validación
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estrato poroelástico y base rígida y, finalmente, con estrato poroelástico y base viscoelástica.

El modelo utilizado será una zapata cuadrada de ancho 2B , enterramiento E , potencia 

del terreno H  y superficie libre a discretizar A=10B . Dado que es doblemente simétrico, solo 

se empleará un cuarto de modelo. 

6.2 Segundo problema de validación y resultados obtenidos

En la figura 25 se muestra el problema planteado con un ejemplo de discretización:

Se trata  de  una  zapata  superficial  que  descansa sobre  un semiespacio  poroelástico.  La 

superficie libre se ha mallado con elementos triangulares habiendo una mayor cantidad en la zona 

próxima  a  la  cimentación.  La  superficie  ocupada  por  la  zapata  se  ha  mallado  con  elementos 

cuadrangulares. En todos los casos son elementos de segundo orden. 

Como norma general, respecto de las gráficas, a la izquierda está la rigidez dinámica y a la 

derecha el amortiguamiento. En la horizontal está la frecuencia adimensional a0  y en las verticales 

las impedancias, las cuales están normalizadas. Las impedancias verticales y horizontales se han 

normalizado con  GB ,  mientras que cabeceo y torsión se han normalizado con  GB3 .  Dada la 

variedad de propiedades para cada problema, en la zona superior de cada gráfica se da información 

sobre las propiedades comunes utilizadas para ese problema en particular. Luego, en las leyendas, 

se añaden las propiedades utilizadas para cada curva solución. Se seguirá el mismo orden en la 

presentación de resultados que la dispuesta en el documento referenciado anteriormente. Así, se  
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Figura 25: Segundo problema de validación en semiespacio poroelástico con modelo mallado
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comienza con los resultados obtenidos.

Comenzando  con  la  figura  26,  se  obtuvieron  los  resultados  para  las  permeabilidades 

k=10−1  y  k=10−3  comprobando que, en la parte real,  sí  había coincidencia, pero no en la  

imaginaria. Así, se probó con k=10−2 . Esta última k  es la considerada correcta. Se asocia a un 

error de imprenta.  Respecto de la concordancia, se observa un alto grado. Solo a altas frecuencias 

58

Figura 26: Impedancia vertical. Comparativa con resultados de Aznárez para cimentación superficial que descansa  

sobre semiespacio poroelástico.
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Figura 27: Impedancia horizontal. Comparativa con resultados de Aznárez para cimentación superficial que  

descansa sobre semiespacio poroelástico.
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hay cierta diferencia pero no es excesiva. Esta diferencia se asocia a que los mallados empleados 

son distintos siendo el utilizado en este TFM es mucho más denso.

Por otro lado, en impedancia horizontal (fig. 27), se han obtenido unos valores de rigidez 

dinámica ligeramente inferiores. Este efecto se asocia, como ya se ha comentado, al mallado más 

fino que se ha empleado. No obstante, la concordancia es excelente, siendo prácticamente calcada 

en el amortiguamiento. 

En la figura 28 se observa el mismo caso que en impedancia vertical respecto de los valores 

de  k .  Hay coincidencia en rigidez para las permeabilidades  k=10−1  y  k=10−3  pero no en 

amortiguamiento, habiéndola para k=10−3  y k=10−2 . 

También,  aunque parten del  mismo valor  (estático)  y  siguen la  misma tendencia,  hay un 

pequeño salto en el inicio. Para saber cuáles son las correctas, se utilizarán las fórmulas aproximadas de 

Domínguez que permiten obtener el valor estático. Según Domínguez, para el caso de cabeceo, el valor 

estático es k ϕ=
4,38

1−0,25
≈5,84 . Así, parece que la solución correcta es la nuestra. 

Respecto de la tendencia, se observa el efecto pronunciado de incremento de rigidez dinámica a 

bajas frecuencias en cabeceo,  típica de valores elevados de la constante de disipación,  para luego 

decrecer. El amortiguamiento siempre es ascendente, siendo mayor cuanto mayor sea la constante de 
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Figura 28: Impedancia de cabeceo. Comparativa con resultados de Aznárez para cimentación superficial que  

descansa sobre semiespacio poroelástico.
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disipación. 

Por último, se observa un claro paralelismo entre las soluciones de la figura 29. En la primera 

gráfica se muestra la rigidez vertical con una pequeña desviación a altas frecuencias. En la siguiente 

(rigidez horizontal) se observa el mismo efecto asociado al mallado, es decir, dado que se ha empleado 

uno más fino se han obtenidos unos valores ligeramente menores. Respecto del efecto de considerar el 

contorno permeable o impermeable, no se aprecia una diferencia significativa, siendo esto habitual en el 

caso de impedancia horizontal.

6.3 Tercer problema de validación y resultados obtenidos

A continuación, en la figura 30, se muestra el tercer problema de validación:
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Figura 30: Tercer problema de validación: estrato poroelástico y base con rigidez infinita

Figura 29: Rigidez dinámica vertical y horizontal. Comparativa con resultados de Aznárez para cimentación  

superficial que descansa sobre semiespacio poroelástico. Influencia de la permeabilidad.
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Se trata de una zapata superficial que descansa sobre un estrato poroelástico, el cual tendrá 

un estrato de potencia  H  y una base con rigidez infinita. La superficie libre se ha mallado con 

elementos  triangulares  habiendo una mayor  cantidad en la  zona próxima a  la  cimentación.  La 

superficie ocupada por la zapata se ha mallado con elementos cuadrangulares. En todos los casos 

son elementos de segundo orden. 

Siguiendo los mismos criterios anteriores y respecto de las gráficas, en la horizontal está la  

frecuencia adimensional  a0  y en las verticales las impedancias normalizadas.  Los factores de 

normalización serán los mismos que en el  problema anterior,  esto son,  GB  para impedancias 

vertical y horizontal, y, para cabeceo y torsión, GB3 . Dada la variedad de propiedades para cada 

problema, en la zona superior de cada gráfica se da información sobre las propiedades comunes  

utilizadas  para  ese  problema  en  particular.  Luego,  en  las  leyendas,  se  añaden las  propiedades 

utilizadas para cada curva solución.

Analizando la impedancia vertical (fig. 31), en el caso de H /B=2 , se observa un ligero 

descenso a lo esperado en la rigidez. Siguiendo el mismo razonamiento anterior, la explicación está 

en el mallado mucho más denso utilizado ahora. Para el resto de relaciones H /B , prácticamente, 

no hay diferencia. La tendencia es parecida a la de una onda, la cual, a medida que aumenta la  

relación H /B , se va aplanando. El camino que van siguiendo es la solución para H /B=∞ . 

Si se analiza el amortiguamiento, el grado de concordancia es muy elevado, obteniendo 
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Figura 31: Impedancia vertical. Comparativa con resultados de Aznárez para cimentación superficial que descansa  

sobre estrato de profundidad variable.
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algún valor que se sale ligeramente de lo esperado pero, que, en cualquier caso, no es importante.  

Además, sigue el mismo comportamiento que en la rigidez, esto es, una onda que, a medida que 

aumenta la relación H /B , va reduciendo su amplitud, siguiendo el camino de H /B=∞ .

Analizando ahora la impedancia horizontal (fig. 32), en la parte real, se observa una ligera 

variación,  que se  asocia  nuevamente  al  mallado más  denso empleado ahora.  A medida que la 

relación  H /B  se hace mayor, se obtiene una menor diferencia de resultados. En el caso límite 

H /B=∞ , se observa el mismo efecto que en resultados obtenidos anteriormente, es decir, una 

solución que es prácticamente paralela a la esperada, y ligeramente inferior. 

Respecto de la tendencia ondulatoria, para H /B  bajas, se observan grandes amplitudes, 

disminuyendo a medida que crece  H /B . El caso límite es  H /B=∞ , con una tendencia casi 

plana. 

Respecto  del  amortiguamiento,  se  parte  de  valores  estáticos  iguales  y,  luego,  sigue  el  

mismo comportamiento que la rigidez, es decir, valores ligeramente inferiores a los esperados. No 

obstante, en términos generales, el grado concordancia es elevado.  

En cabeceo (fig.33), a medida que la relación H /B  es mayor, la diferencia de resultados 

es menor. Pero, a pesar de esta diferencia, en el caso  H /B=2 ,  se considera que el grado de 

concordancia  es  bueno.  En  el  caso  límite  de  H /B=∞ ,  se  ve  que  el  valor  estático  es 
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Figura 32: Impedancia horizontal. Comparativa con resultados de Aznárez para cimentación superficial que  

descansa sobre estrato de profundidad variable.
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aproximadamente de 5,85.  Si se recuerda de problemas anteriores, según Domínguez ese valor 

debe ser de 5,84. Hay una ligera diferencia respecto de lo obtenido por la División hace algunos  

años a lo que no se ha encontrado explicación. En cualquier caso, la diferencia no es excesiva. 

Respecto  del  amortiguamiento,  sigue  el  mismo  patrón  que  la  rigidez,  esto  es,  valores 

ligeramente menores, asociados, también, al mallado. La tendencia siempre es creciente y,  para 

relaciones H /B  bajas, ondulante con amplitudes importantes.

6.4 Cuarto problema de validación y resultados obtenidos

La figura 34 muestra el cuarto problema de validación con los contornos discretizados:
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Figura 33: Impedancia de cabeceo. Comparativa con resultados de Aznárez para cimentación superficial que  

descansa sobre estrato de profundidad variable.
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Figura 34: Cuarto problema de validación: estrato poroelástico y base viscoelástica de rigidez variable
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Se trata de una zapata superficial que descansa sobre un estrato poroelástico de potencia 

H  y,  debajo,  hay una base viscoelástica,  de  rigidez relativa  con respecto al  estrato superior,  

variable. Las relaciones serán:

Respecto de los  mallados,  se  han seguido los  mismos  criterios  que en el  problema de 

validación anterior y, respecto de la lectura de resultados de las gráficas, también.

Se  trata  de  una  zapata  superficial  con  una  relación  H /B=2 ,  una  permeabilidad  de 

k=10−3 m/ s , un amortiguamiento de ξ=0,05  y una densidad añadida de ρa=150 kg /m3 . 

En la figura 35 se observa como, a medida que las relaciones RG  se hacen mayores, se 

produce un aplanamiento de las curvas, siguiendo el camino de la solución límite RG=∞ . 

Respecto  de  los  valores  obtenidos,  en  la  parte  real,  a  medida  que  la  relación  RG  

disminuye, aumenta la diferencia de resultados. Se cumple que los resultados del modelo BEM es 

siempre menor que la solución de Aznárez, asociando este efecto a la diferencia de densidades de  

mallado. No obstante, la diferencia es aceptable.
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Figura 35: Impedancia horizontal. Comparativa con resultados de Aznárez para cimentación superficial que  

descansa sobre estrato de rigidez variable.
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6.5 Resultados adicionales obtenidos

Ahora  se  plantea  calcular  unos  resultados  adicionales  a  los  obtenidos  en  el  segundo 

problema de validación (figura 25). En el documento original no están estas gráficas. Sin embargo, 

sí  que  se  hacen  comentarios  respecto  a  la  influencia  de  la  densidad  añadida,  la  constante  de 

disipación y el amortiguamiento. Es probable que estos problemas hayan sido resueltos pero, por 

falta  de  espacio,  no  se  hayan  añadido  al  documento.  Por  tanto,  se  mantendrán  las  mismas 

propiedades  excepto  k  y  ρa .  Así,  se  podrá  analizar  qué  ocurre  bajo  estas  condiciones.  Los 

resultados se muestran a continuación.

6.5.1 Influencia  de  la  densidad  añadida  sobre  la  impedancia  

vertical

De la lectura de la figura 36 se puede ver que, manteniendo constante k , hay un cambio 

poco significativo en la rigidez cuando varía ρa . Así, para k=10−1 , la diferencia es pequeña y 

solo  apreciable  a  altas  frecuencias,  para  k=10−2  la  diferencia  es  menor  y,  para  k=10−3  

prácticamente inapreciable. 

En el caso del amortiguamiento, se observa un comportamiento parecido a la rigidez pero más 

pronunciado. Así, para k=10−1  y a altas frecuencias, se ve cierta dependencia de ρa . A medida que 
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Figura 36: Influencia de la densidad añadida ρa sobre la impedancia vertical. Sin amortiguamiento.
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k →0 , los cambios en ρa  afectan en menor medida, siendo prácticamente inapreciable para k=10−3 .

6.5.2 Influencia  del  amortiguamiento  ξ y  la  constante  de  

disipación b sobre la impedancia vertical

Otros  parámetros  importantes  a  estudiar  son  el  amortiguamiento  y  la  constante  de  

disipación. En la figura 37 se han obtenido los resultados para el caso de impedancia vertical.  

De  su  lectura  se  ve  que  la  rigidez  tiene  cierta  dependencia  del  amortiguamiento  a  altas  

frecuencias,  manteniendo  k  constante.  Si  se  mantiene  constante  el  amortiguamiento,  la 

rigidez  se  ve  fuertemente  afectada  por  la  constante  de  disipación.  A  medida  que  la 

permeabilidad  k  disminuye (y por tanto, la constante de disipación aumenta), primero hay 

una tendencia creciente a bajas frecuencias para luego decrecer rápidamente, siendo mayor la 

pendiente decreciente cuanto menor es k . 

En  la  parte  imaginaria  se  observa  que  el  aumento  del  amortiguamiento  supone  un 

aumento de la impedancia, siendo más visible a altas frecuencias. Respecto de la influencia  

de  k ,  se  ve  que  hay una  dependencia  elevada.  A medida  que  k  disminuye,  aumenta  la 

pendiente. 
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Figura 37: Influencia de la constante de disipación b y del amortiguamiento ξ sobre la impedancia vertical.
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6.5.3 Influencia  del  amortiguamiento  ξ  y  la  constante  de  

disipación b sobre la impedancia horizontal 

Para el caso de impedancia horizontal, en la figura 38 se observa el mismo efecto que 

en  la  impedancia  vertical,  esto  es,  manteniendo  constante  k  se  observa,  en  general,  un 

cambio poco significativo en la rigidez. No obstante, se hace más notorio a altas frecuencias.  

Así, un aumento del amortiguamiento supone una disminución de la rigidez. Respecto de la  

influencia  de  k ,  es  bastante  menor  que  en  el  caso  vertical,  siendo  más  notorio  a  altas  

frecuencias pero no habiendo mucha diferencia cuando varía.

En la  parte  imaginaria  se  observa  que  el  aumento  del  amortiguamiento  supone  un 

aumento  de  la  impedancia,  siendo  más  visible  a  altas  frecuencias.  Además,  con  una  

disminución de k  aumenta la pendiente.

6.5.4 Influencia  del  amortiguamiento  ξ  y  la  constante  de  

disipación b sobre la impedancia cabeceo

En el último caso (fig. 39, cabeceo), se observa el mismo efecto que en la impedancia  

vertical  y  horizontal,  esto  es,  manteniendo constante  k  hay,  en  general,  un  cambio  poco 

significativo  en  la  rigidez.  No  obstante,  se  hace  más  notorio  a  altas  frecuencias.  Así,  un 
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Figura 38: Influencia de la constante de disipación b y del amortiguamiento ξ sobre la impedancia horizontal.
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aumento del amortiguamiento supone una disminución de la rigidez. 

Por último, en la parte imaginaria, se observa que el aumento del amortiguamiento 

supone  un  aumento  de  la  impedancia,  siendo  más  visible  a  altas  frecuencias  y  que  una  

disminución de la permeabilidad k  supone un aumento de la pendiente. 

6.6 Conclusiones

En este capítulo se han resuelto una serie de problemas de mayor dificultad que en el  

capítulo anterior, habiendo planteado la interacción entre terrenos. Se ha podido comprobar 

que el programa Multifebe proporciona resultados excelentes en estas condiciones. 

Las diferencias observadas se deben a la cantidad de nodos empleados. Los primeros 

resultados se obtuvieron cuando la capacidad computacional era bastante reducida. Así, era 

necesario utilizar mallados poco densos para resolver los problemas en un tiempo razonable.  

Sin embargo,  hoy es  posible  utilizar  mallados con un número  muy superior  de nodos.  De 

hecho, donde antes se utilizaban unos pocos cientos de nodos, ahora se han empleado varios 

miles. 

Después  de  comprobar  la  validez  del  software  se  procederá  ahora  a  resolver  el 

problema donde se modelizará una capa freática. 
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Figura 39: Influencia de la constante de disipación b y del amortiguamiento ξ sobre la impedancia de cabeceo.
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Capítulo 7 

Impedancias  para  suelos  poroelásticos  considerando  el  

nivel freático

7.1 Descripción del problema

Vistas  las  excelentes  capacidades  del  código  disponible,  se  procede  a  exponer  cómo  se 

modelizará el nivel freático. Se considerará, como se ha hecho hasta ahora, una zapata rígida, sin masa, 

con la geometría de la figura siguiente (fig. 40):

Este  problema  se  puede  modelizar  considerando  el  terreno  superior  como 

viscoelástico con propiedades de esqueleto sólido y el inferior como poroelástico saturado.  

No obstante, se ha optado por considerar el superior como poroelástico teniendo aire en los 

poros  (se  obtienen resultados  prácticamente  iguales  como  luego  se  mostrará  para  algunos 

casos  resueltos).  La  diferencia  está  en  los  valores  de  la  constante  de  disipación  b ,  la 

densidad del fluido ρa  y las constantes de Biot Q  y R . Si se considera viscoelástico y se 

traslada a un modelo poroelástico en el que no haya ningún fluido en los intersticios, todos  
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Figura 40: Modelo utilizado para el cálculo de impedancias considerando la capa freática con mallado
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estos valores son 0. La realidad es que dentro siempre habrá, al menos, aire, pues para que no  

haya  aire  habría  que  realizar  un  vacío.  Si  se  comparan  los  cuatro  valores  comentados,  es 

decir,  entre  aire  y  agua,  se  ve que hay una  diferencia  enorme.  Dicho de  otra  manera,  los 

valores de las cuatro variables cuando se considera aire son muy bajos o,  directamente, 0.  

Por tanto, muy parecidos a considerar un poroelástico llevado al caso extremo de no tener  

fluido en sus intersticios, y por tanto, con propiedades de viscoelástico. Dicho lo anterior, los  

valores de Q  y R  para aire se pueden obtener de manera aproximada como: 

Q=(1−ϕ)K f  (172)

R=ϕK f  (173)

siendo K f  el módulo de compresibilidad del aire (en este caso K f=100.000 Pa ). Así, las 

propiedades del terreno superior son (tabla 4): 
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Propiedades

Símbolo Valor y unidades

Módulo de elasticidad transversal G 3,2175⋅107 N

m2

Módulo de Poisson ν 0,25

Densidad del sólido ρs 1.425
kg

m3

Densidad del fluido (aire) ρ f 1,2
kg

m3

Densidad añadida ρa 0
kg

m3

Amortiguamiento ξ 0,05

Porosidad ϕ 0,35

Constante de Biot (I) Q 65.000
N

m2

Constante de Biot (II) R 35.000
N

m2

Constante de disipación b 0
N⋅s

m4

Tabla 4: Propiedades del estrato superior considerado como poroelástico con aire en los poros
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Las propiedades del terreno inferior son (tabla 5): 

7.2 Datos adicionales

La densidad de esqueleto sólido es: 

ρ=ρs(1−ϕ)=1.425(1−0,35)=926,25
kg

m3  (174)

La velocidad de propagación de onda será: 

cs=√G
ρ =√ G

ρs(1−ϕ)
=√ 3,2175⋅107

1.425(1−0,35)
=186,3782

m
s

 (175)
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Propiedades

Símbolo Valor y unidades

Módulo de elasticidad transversal G 3,2175⋅107 N

m2

Módulo de Poisson ν 0,25

Densidad del sólido ρs 1.425
kg

m3

Densidad del fluido ρ f 1.000
kg

m3

Densidad añadida ρa 0
kg

m3

Amortiguamiento ξ 0,05

Porosidad ϕ 0,35

Constante de Biot (I) Q 4,61⋅108 N

m2

Constante de Biot (II) R 2,4823⋅108 N

m2

Constante de disipación b 1,1986⋅107 N⋅s

m4

Tabla 5: Propiedades del estrato inferior considerado como poroelástico saturado
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La función frecuencia a utilizar será:

ω(a0)=
cs

B
⋅a0=

186,3782
4

⋅a0=46,59455⋅a0  (176)

Se debe establecer un tamaño máximo de elemento. Será un compromiso entre tiempo de 

cómputo y precisión. Se establecerá un elemento de tamaño menor en la zona próxima a la zapata 

y,  desde  ahí,  irá  creciendo hasta  cubrir  toda  la  superficie  libre.  En  cualquier  caso,  el  tamaño 

máximo será: 

tamaño máximo=λ
2  (177)

donde λ  es la longitud de onda. Para obtener λ  primero se definirá el período mínimo T min : 

T min=
2π

cs

B
⋅a0

 (178)

Operando se obtiene: 

λ
2
=

1
2

cs⋅T min=
1
2

cs
2π

cs

B
⋅a0

=π
B
a0

=4,188 m
 (179)

7.3 Condiciones de contorno

Respecto de la interacción entre terreno superior e inferior será considerada permeable.  

Además, se considerará soldada. 

Respecto de la interacción entre zapata y terreno, se considerará soldada e impermeable. 

7.4 Relaciones a calcular

Las relaciones a calcular serán: 

E
B
=[0 ;0,25 ;0,50 ;1 ;2 ;4]  (180)
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h
B
=[0 ;1 ; 2 ; 4 ;10 ;∞]  (181)

De las relaciones anteriores,  teniendo en cuenta que se calcularán los 4 tipos (vertical, 

horizontal, cabeceo y torsión) y que la zapata es cuadrada, será posible obtener la matriz completa 

de impedancias. Además, de lo anterior se deduce que se tendrán que calcular 144 curvas. 

7.5 Impedancias verticales

Las gráficas se han hecho siguiendo siempre los estos mismos criterios. Así, a la izquierda está 

la  rigidez  dinámica  y  a  la  derecha  el  amortiguamiento.  En el  eje  de  abscisas  está  la  frecuencia 

adimensional  a0  y,  en los verticales, las impedancias normalizadas. La impedancia vertical se ha 

normalizado con el factor GB . En la zona superior de cada gráfica se da el grado de embebimiento 

E /B . Luego, en las leyendas, se añaden las relaciones h /B  utilizadas para cada curva solución.

La  figura  41  representa  el  caso  de  una  zapata  superficial  que  descansa  sobre  un  estrato 

poroelástico con aire en los poros de potencia H  variable. El segundo estrato, que está por debajo del 

anterior, es el poroelástico saturado (agua en los poros sin capacidad de admitir más). 

Respecto de los resultados obtenidos, para el caso extremo de  h /B=0  (todo poroelástico 

saturado), se observa que, a altas frecuencias, la rigidez dinámica es negativa y,  además, de valor 

numérico importante. Cuando empieza a haber terreno seco, a altas frecuencias, su valor se reduce de 

una manera importante. También se ve que las curvas siguen un patrón parecido a una onda, reduciendo 
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Figura 41: Impedancia vertical. Grado de embebimiento E/B = 0. Influencia del nivel freático.

0 0.5 1 1.5 2 2.5 3
-20

-15

-10

-5

0

5

10

15

20

Frecuencia, a
0

R
e(

k z)/
G

B

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

Frecuencia, a
0

Im
(k

z)/
G

B

E/B = 0

 

 

h/B=0
h/B=1
h/B=2
h/B=4
h/B=10
h/B=



Capítulo 7 

su amplitud a medida que la relación h /B  aumenta, y el camino que siguen es el caso límite, cuando 

todo el terreno está drenado. Cuando h=B , se obtienen los valores de rigidez dinámica máximos en 

valores positivos. Respecto del amortiguamiento, tiene una tendencia parecida a una onda y se aplana en 

los casos extremos, siendo el mayor en el caso h /B=0  para todos los valores de la frecuencia. Como 

se verá en las siguientes gráficas, estas tendencias, básicamente, se mantendrán para aumentos del grado 

de embebimiento E /B . 

En la figura 42 se ven algunos saltos en las curvas. Se trata de un error numérico al aplicar el  

código. Con cambiar ligeramente la densidad del fluido se ha corregido. 
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Figura 42: Impedancia vertical. Grado de embebimiento E/B = 0,25. Influencia del nivel freático.
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Figura 43: Impedancia vertical. Grado de embebimiento E/B = 0,25. Influencia del nivel freático. Corrección de  

resultados.
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En  otra  de  las  curvas  vuelve  a  producirse  un  salto  (figura  44).  Siguiendo  el  mismo 

procedimiento anterior se resuelve el problema. 
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Figura 45: Impedancia vertical. Grado de embebimiento E/B = 0,5. Influencia del nivel freático. Corrección de  

resultados.
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Figura 44: Impedancia vertical. Grado de embebimiento E/B = 0,5. Influencia del nivel freático.
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Como últimos comentarios a los resultados obtenidos, se ve que, con el aumento del  

grado de embebimiento  E /B , aumenta tanto la rigidez como el amortiguamiento. Además, 

también aumenta la tendencia ondulante, apareciendo rizado. 
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Figura 46: Impedancia vertical. Grado de embebimiento E/B = 1. Influencia del nivel freático.
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Figura 47: Impedancia vertical. Grado de embebimiento E/B = 2. Influencia del nivel freático.
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7.6 Impedancias  verticales  considerando  la  región  superior  

como viscoelástica

Por último, anteriormente se comentó que no importa considerar el terreno superior  

como viscoelástico o poroelástico con aire en su interior.  Se mostrarán las tres curvas que  

presentaron un salto junto con las curvas obtenidas para el mismo problema considerando el  

terreno superior como viscoelástico con propiedades equivalentes. Esto fue algo que se hizo  

para  comprobar  que,  efectivamente,  los  saltos  se  debían  a  un  problema  numérico.  Así,  el 

modelo será ahora el siguiente:
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Figura 48: Impedancia vertical. Grado de embebimiento E/B = 4. Influencia del nivel freático.
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Figura 49: Modelo alternativo para el cálculo de impedancias considerando la capa freática (estrato superior  

viscoelástico)
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Las propiedades del terreno viscoelástico equivalente serán (tabla 6):

Los resultados obtenidos son los siguientes:

Se observa que los resultados no difieren mucho al considerar el terreno superior como un 

medio poroelástico con aire o viscoelástico con propiedades de esqueleto sólido. Por tanto, ambos  

modelos son equivalentes, como era de esperar.

7.7 Impedancias horizontales

Las figuras desde la 51 hasta la 56 representan las impedancias horizontales obtenidas para 

distintos grados de embebimiento y grado de profundidad del nivel freático respecto del contorno 

inferior de la zapata. Su lectura no difiere de la impedancia vertical.
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Figura 50: Comparativa de modelos. Poroelástico-aire/Poroelástico-agua vs Viscoelástico/Poroelástico-agua
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Propiedades

Símbolo Valor y unidades

Módulo de elasticidad transversal G 3,2175⋅107 N

m2

Módulo de Poisson ν 0,25

Densidad del sólido ρs 926,25
kg

m3

Amortiguamiento ξ 0,05

Tabla 6: Propiedades del estrato superior considerado como viscoelástico
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Leyendo primero la figura 51, para el caso extremo de h /B=0  (todo poroelástico saturado), 

se observa que la rigidez dinámica adquiere los valores máximos para todas las frecuencias. Cuando 

empieza a haber terreno seco, se ve que las curvas siguen un patrón parecido a una onda, reduciendo su 

amplitud a medida que la relación h /B  aumenta. El camino que siguen es el caso límite donde todo el 

terreno es semiespacio poroelástico drenado. Respecto del amortiguamiento, tiene una tendencia casi 

plana y creciente, obteniendo los mayores valores en el caso  h /B=0  para todos los valores de la 

frecuencia. Como se verá en las siguientes gráficas (figuras 52 a 56), la tendencia es parecida, pero con 

aumentos de la rigidez y el amortiguamiento con aumentos del grado de embebimiento. 
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Figura 51: Impedancia horizontal. Grado de embebimiento E/B = 0. Influencia del nivel freático.
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Figura 52: Impedancia horizontal. Grado de embebimiento E/B = 0,25. Influencia del nivel freático.
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Figura 53: Impedancia horizontal. Grado de embebimiento E/B = 0,5. Influencia del nivel freático.
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Figura 54: Impedancia horizontal. Grado de embebimiento E/B = 1. Influencia del nivel freático.
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Al igual que en el caso vertical, aparece un rizado en la rigidez que se hace más visible con 

el aumento de E /B  y, también con el aumento de E /B , se ve que las diferencias entre curvas se 

hace más pequeña.
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Figura 55: Impedancia horizontal. Grado de embebimiento E/B = 2. Influencia del nivel freático.
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Figura 56: Impedancia horizontal. Grado de embebimiento E/B = 4. Influencia del nivel freático.
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7.8 Impedancias de cabeceo

Procediendo a la lectura de resultados de impedancia de cabeceo, las gráficas tienen un 

solo cambio, esto es, que el factor de normalización será ahora de GB3 . Por lo demás, se mantiene 

todo igual.

Observando  la  figura  57,  para  el  caso  extremo  de  h /B=0  (todo  poroelástico 

saturado), se observa que la rigidez dinámica adquiere los valores máximos y positivos (este  

efecto es especialmente pronunciado cuando la constante de disipación es elevada). Cuando  

empieza a haber terreno seco, hay una caída importante, teniendo, prácticamente, el mismo 

comportamiento desde h /B=2  hasta h /B=∞ . 

Respecto del amortiguamiento, tiene una tendencia casi plana y creciente y, a medida  

que crece el enterramiento, se ve que la profundidad del nivel freático no tiene influencia en  

los resultados. 

 En las siguientes  figuras  (desde 58 hasta  62)  se  ve un comportamiento parecido al  

descrito aquí, con los únicos cambios del aumento de impedancia con el aumento de E /B  y 

la aparición también del rizado en la rigidez dinámica.
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Figura 57: Impedancia de cabeceo. Grado de embebimiento E/B = 0. Influencia del nivel freático.
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Figura 58: Impedancia de cabeceo. Grado de embebimiento E/B = 0,25. Influencia del nivel freático.
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Figura 59: Impedancia de cabeceo. Grado de embebimiento E/B = 0,5. Influencia del nivel freático.
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Figura 60: Impedancia de cabeceo. Grado de embebimiento E/B = 1. Influencia del nivel freático.
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Figura 61: Impedancia de cabeceo. Grado de embebimiento E/B = 2. Influencia del nivel freático.
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Se ve que,  a  medida  que aumenta  el  grado de embebimiento,  la  influencia  del  grado de 

profundidad del nivel freático se hace menor, siendo muy pequeña en la rigidez y,  prácticamente, 

inapreciable en el amortiguamiento.

7.9 Impedancias de torsión

Por último, se procede a la lectura de resultados de impedancia de torsión. Las figuras que 

representan las impedancias de torsión van desde la 63 hasta la 68. 

85

Figura 63: Impedancia de torsión. Grado de embebimiento E/B = 0. Influencia del nivel freático.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

Frecuencia, a
0

R
e(

k 
z)/

G
B

3

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Frecuencia, a
0

Im
(k
 z)/

G
B

3

E/B = 0

 

 

h/B=0
h/B=1
h/B=2
h/B=4
h/B=10
h/B=

Figura 62: Impedancia de cabeceo. Grado de embebimiento E/B = 4. Influencia del nivel freático.
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La principal conclusión que se saca de la lectura de resultados es que el nivel freático tiene 

poco efecto sobre las impedancias de torsión. Como se ve en las gráficas, para una misma relación  

E /B ,  se obtienen seis curvas casi iguales.  El rizado que se observaba antes,  ahora no se ve.  

Respecto del amortiguamiento, tiene una tendencia casi plana y creciente y, a medida que crece el 

enterramiento, se ve que la profundidad del nivel freático no tiene influencia en los resultados. 

Respecto de la influencia del grado de embebimiento E /B , solo se ve un aumento del valor de las 

impedancias, pero la tendencia es la misma y, prácticamente, sin ninguna influencia cuando cambia 

la profundidad del nivel freático.
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Figura 64: Impedancia de torsión. Grado de embebimiento E/B = 0,25. Influencia del nivel freático.
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Figura 65: Impedancia de torsión. Grado de embebimiento E/B = 0,5. Influencia del nivel freático.
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Figura 66: Impedancia de torsión. Grado de embebimiento E/B = 1. Influencia del nivel freático.
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Figura 67: Impedancia de torsión. Grado de embebimiento E/B = 2. Influencia del nivel freático.
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7.10 Consideraciones adicionales sobre resultados obtenidos

Una manera de comprobar si los resultados obtenidos son coherentes es comprobar que el  

valor de la impedancia estática converge a un solo valor para distintas curvas solución. Así, existen  

fórmulas obtenidas mediante ajuste numérico para comprobar que el valor obtenido es válido. 

En este TFM se ha comprobado en impedancia vertical y cabeceo para zapata superficial.  

Los resultados obtenidos son los siguientes para impedancia vertical:
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Figura 68: Impedancia de torsión. Grado de embebimiento E/B = 4. Influencia del nivel freático.
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Figura 69: Impedancia vertical. Grado de embebimiento E/B = 0. Cálculo a bajas frecuencias.
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La fórmula que propone Domínguez en impedancia vertical para elementos cuadráticos es:

k z=
4,75
1−ν

⋅GB⋅[1+0,47
E
B
−0,05(

E
B
)

2

]  
(182)

Teniendo en cuenta que 
E
B
=0 y que se están utilizando valores normalizados se llega a : 

k z=
4,75

1−0,25
≈6,34  (183)

Se trata de un valor muy próximo al esperado.

Para el caso de cabeceo se obtiene:

La fórmula que propone Domínguez en impedancia de cabeceo para elementos cuadráticos es:

k ϕ=
4,38
1−ν

⋅GB3
⋅[1+0,98

E
B
+1,13(

E
B
)

2

]  (184)

Teniendo en cuenta que 
E
B
=0 y que se están utilizando valores normalizados se llega a : 

k ϕ=
4,38

1−0,25
≈5,84  (185)

También muy próximo. Por tanto, los resultados obtenidos son coherentes a lo esperado. 
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Figura 70: Impedancia de cabeceo. Grado de embebimiento E/B = 0. Cálculo a bajas frecuencias.
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7.11 Conclusiones

Después de la lectura de las gráficas se pueden extraer algunas conclusiones. En primer 

lugar, se concluye que el enterramiento tiene un efecto importante en los resultados. A medida que 

crece, crecen las impedancias y se produce un rizado en las curvas. Este efecto de rizado es más  

pronunciado en impedancia vertical y horizontal, en menor medida en cabeceo y, prácticamente,  

inexistente en torsión. 

También se ve que, a medida que aumenta el grado de profundidad del nivel freático, se  

produce un aplanamiento de las curvas. En el caso límite h /B=0 , el nivel freático tiene un efecto 

muy  importante  en  impedancia  de  cabeceo  a  bajas  frecuencias,  y,  dado  que  la  constante  de 

disipación utilizada en este TFM es elevada, se disminuye este efecto drásticamente con un leve 

incremento del grado de profundidad del nivel. En el caso de impedancias vertical y horizontal, 

dado el efecto rizado que se produce con el aumento del enterramiento, los valores fluctúan. No 

obstante,  se  puede concluir  que con el  aumento del  nivel,  disminuye  la rigidez dinámica y el  

amortiguamiento y presentan una dependencia importante de ese factor. Por último, en el caso de 

torsión, se observa una dependencia prácticamente inexistente. 
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Fidelidad de los modelos de suelo viscoelástico drenado-no  

drenado equivalentes

8.1 Descripción del problema

En este capítulo se resolverá una muestra de los problemas resueltos en el capítulo anterior 

pero considerando otro modelo que, en teoría, debe ser equivalente. Gráficamente, el  modelo a 

comparar es el de la figura 71:

Se trata de una zapata que podrá ser superficial o embebida. Habrá un estrato de potencia H 

y otra región inferior.  El terreno superior se modelizará como viscoelástico con propiedades de 

esqueleto sólido de su poroelástico equivalente. El inferior se modelizará como viscoelástico con 

propiedades de sólido no drenado de su poroelástico equivalente. La superficie libre se ha mallado 

con elementos triangulares habiendo una mayor cantidad en la zona próxima a la cimentación. La 

superficie ocupada por la zapata se ha mallado con elementos cuadrangulares. En todos los casos 
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Figura 71: Modelo alternativo sólido drenado/no drenado para el cálculo de impedancias considerando la capa  

freático
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son elementos de segundo orden. 

Las propiedades de la región superior son:

Para el inferior se mantienen las mismas propiedades excepto la densidad (pues tiene agua en 

lugar de aire) y el módulo de Poisson cuyo valor será: 

νsnd=

λ+
(Q+R)2

R

2⋅[λ+G+
(Q+R)2

R
]

 (186)

donde λ es el coeficiente de Lamé.  Sustituyendo se obtiene: 

v snd=0,49230528  (187)

Por tanto, la tabla de propiedades será (tabla 8): 
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Propiedades

Símbolo Valor y unidades

Módulo de elasticidad transversal G sd 3,2175⋅107 N

m2

Módulo de Poisson νsd 0,25

Densidad del sólido drenado ρsd 926,25
kg

m3

Amortiguamiento ξ sd 0,05

Tabla 7: Propiedades del estrato superior (sólido drenado/viscoelástico equivalente)

Propiedades

Símbolo Valor y unidades

Módulo de elasticidad transversal G snd 3,2175⋅107 N

m2

Módulo de Poisson νsnd 0,49230528

Densidad del sólido no drenado ρsnd 1.276,25
kg

m3

Amortiguamiento ξ snd 0,05

Tabla 8: Propiedades del estrato inferior (sólido no drenado/viscoelástico equivalente)
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8.2 Consideraciones adicionales

Para  este  capítulo,  no  se  repetirán todas  las  curvas.  Será  suficiente  considerar  una 

muestra  representativa.  Para  ello  se  escogerán  curvas  que  presenten  ondulaciones,  

comportamientos que se repitan poco o que su valor numérico sea bastante diferente de otras 

relaciones E /B .

8.3 Impedancias verticales

Para la lectura de las gráficas, se mantienen los mismos criterios anteriores. En las 

leyendas se añade el término “Drenado-no drenado” el cual se refiere al modelo que utiliza  

en las regiones características de medio viscoelástico. Si no se dice nada es su equivalente  

poroelástico. Así, los resultados obtenidos se muestran en las siguientes figuras:
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Figura 72: Impedancia vertical. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Figura 73: Impedancia vertical. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Figura 74: Impedancia vertical. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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De la lectura de las figuras desde 72 hasta 76 (impedancia vertical), se ve que no hay 

una  diferencia  significativa  de  resultados.  A medida  que  aumenta  la  relación  E /B  se 

observa  cierta  diferencia  pero,  en  ningún  caso,  se  puede  importante.  En  el  caso  del  

amortiguamiento, la diferencia es prácticamente inexistente, pasando las curvas del modelo  

poroelástico  por  todos  los  puntos  del  modelo  elástico.  Por  tanto,  se  considera  que  ambos  

modelos son equivalentes.
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Figura 75: Impedancia vertical. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Figura 76: Impedancia vertical. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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8.4 Impedancias horizontales

Siguiendo con la lectura de resultados, y al igual que en el caso vertical, el término 

“Drenado-no  drenado”  se  refiere  al  modelo  que  utiliza  en  las  regiones  características  de 

medio  viscoelástico.  Si  no  se  dice  nada  es  su  equivalente  poroelástico.  Los  resultados 

obtenidos son los siguientes (figuras 77 a 79):

En este caso se puede observar que las diferencias son menores incluso que en el caso vertical. 

Por tanto, para el caso horizontal, ambos modelos también se pueden considerar equivalentes. 
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Figura 78: Impedancia horizontal. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Figura 77: Impedancia horizontal. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Para alguna curva se observa cierta diferencia pero, en ningún caso, se puede importante. Tanto 

en el caso del amortiguamiento como en la rigidez, las curvas del modelo poroelástico pasan por todos 

los puntos del modelo elástico.

8.5 Impedancias de cabeceo

Los resultados obtenidos son los siguientes (figuras 80 a 82): 
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Figura 80: Impedancia de cabeceo. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Figura 79: Impedancia horizontal. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Respecto de las impedancias vertical y horizontal, solo habrá un cambio en la lectura de 

gráficas. Mientras que en los dos primeros casos el factor normalizador era GB , ahora será GB3 . 

Al  igual  que  en  los  casos  anteriores,  prácticamente  no  hay  diferencias.  Tanto  en  el  caso  del 

amortiguamiento como en la rigidez, las curvas del modelo poroelástico pasan por todos los puntos 

del modelo elástico. Así, también para el caso de cabeceo, ambos modelos se pueden considerar 
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Figura 81: Impedancia de cabeceo. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Figura 82: Impedancia de cabeceo. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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Fidelidad de los modelos de suelo viscoelástico drenado-no drenado equivalentes

equivalentes. 

8.6 Impedancias de torsión

Por  último,  el  caso  de  torsión  es  el  que  presenta  un  comportamiento  más  estable  por 

cambios en la  profundidad del nivel freático. Así, es el caso para el que se han resuelto menor 

cantidad de curvas. Los resultados obtenidos son los siguientes (figura 83):

Como ya se comentó, la impedancia de torsión prácticamente no se ve afectada por la 

profundidad  de  nivel  freático  y  se  obtienen  unos  resultados  prácticamente  idénticos 

independientemente del modelo utilizado. Así, también para el caso de torsión, ambos modelos se 

pueden considerar equivalentes.

8.7 Conclusiones

En términos de impedancias, y para el rango de suelos utilizados, se puede afirmar que los 

modelos  con  suelos  viscoelásticos  drenado/no  drenado  equivalentes  ofrecen  resultados  muy 

parecidos a los obtenidos con suelos poroelásticos. Así, en los casos horizontal, cabeceo y torsión 

los resultados son prácticamente idénticos. En el caso vertical, a medida que aumenta la relación 

E /B , aumenta la diferencia de resultados entre modelos para la parte real, no habiéndola en el  

amortiguamiento.  De  esto  se  considera  que,  aún  cuando  las  diferencias  son  pequeñas,  son 
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Figura 83: Impedancia de torsión. Comparativa de modelos. Modelo Poroelástico vs Sólido drenado-no drenado.  
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apreciables. Ello resulta razonable pues este modo excita predominantemente ondas P, de donde la 

interacción de ondas P1 y P2 (único del modelo poroelástico) pueden jugar un papel visible. 

Aunque los resultados obtenidos muestren concordancia, la constante de disipación b  no 

se ha considerado a la hora de construir el suelo viscoelástico equivalente. Solo cuando b=0  o 

b→∞  se transita en los límites rigurosos de equivalencia. Por tanto, para los valores de constante  

de  disipación  utilizados  en  el  modelo  poroelástico  (ver  Tablas  4  y  5),  es  razonable  que  los 

resultados sean muy parecidos. Con todo ello, en el siguiente capítulo se estudia la influencia de la 

constante de disipación. 
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Capítulo 9 

Influencia de la constante de disipación

9.1 Descripción del problema

En el capítulo 7 se obtuvieron una serie de resultados con una constante de disipación de: 

b1=1,1986⋅107 N⋅s

m4  (188)

siendo este valor el correspondiente a un coeficiente de permeabilidad de: 

k 1=10−4 m
s

 (189)

Ahora se obtendrán, con las propiedades del terreno expuestas en el capítulo 7, sobre la 

batería de problemas del capítulo 8, las impedancias variando el coeficiente de permeabilidad. Así,  

se podrá ver la influencia de este parámetro sobre los resultados. 

Los coeficientes de permeabilidad junto con sus respectivas constantes de disipación serán 

las de la siguiente tabla (9):
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Propiedades

Permeabilidad Constante de disipación

k 1=10−4 m
s

b1=1,1986⋅107 N⋅s

m4

k 2=10−1 m
s

b2=1,1986⋅104 N⋅s

m4

k 3=∞
m
s

b3=0
N⋅s

m4

Tabla 9: Valores de la permeabilidad y su respectiva constante de disipación a utilizar para comparativa
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9.2 Impedancias verticales

En las  leyendas  se  añaden las  propiedades  utilizadas  para  cada  curva  solución.  Se 

expondrán los resultados en figuras para cada relación  E /B .  De cada gráfica obtenida, se 

muestran resultados para diferentes grados de profundidad del nivel freático y constantes de  

disipación. Los resultados se muestran en las figuras 84 a 88.

Se ve claramente la influencia de la constante de disipación, principalmente, a altas  

frecuencias. Para la relación  h /B=1 ,  hay una fuerte dependencia,  mientras que a medida 

que la relación h /B  aumenta, disminuye su efecto. Dicho de otra manera, cuando aumenta 

la profundidad del nivel freático, la constante de disipación pierde importancia. 

Este comportamiento se observa igual para diferentes grados de embebimiento E /B  

(figuras 85 a 88) distintos del caso superficial. Se cumple que el nivel freático tiene un efecto  

importante para relaciones h /B  bajas.
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Figura 84: Impedancia vertical. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 0.
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Figura 85: Impedancia vertical. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 0,25
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Figura 86: Impedancia vertical. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 0,5
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De lo  mostrado se  llega  a  la  conclusión  de  que  la  constante  de  disipación  tiene  un  efecto 

amplificador de los resultados. A medida que la constante disminuye las curvas obtenidas se hacen más 

planas. En el caso de la rigidez el efecto amplificador se hace más notorio a altas frecuencias En el caso del 

amortiguamiento, el efecto amplificador de la constante de disipación no se aprecia tanto.
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Figura 88: Impedancia vertical. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 4
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Figura 87: Impedancia vertical. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 2
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9.3 Impedancias horizontales

El caso horizontal se muestra en las figuras 89 a 91 para diferentes grados de embebimiento E /B . 

Básicamente, se ve un efecto parecido al  caso vertical,  es decir,  para relaciones h /B  bajas hay una 

dependencia de la constante de disipación, pero este efecto es bastante menos pronunciado, y prácticamente 

inexistente en el amortiguamiento. 
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Figura 89: Impedancia horizontal. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 0.
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Figura 90: Impedancia horizontal. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 0,25
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Además, con aumentos de E /B , se observa que la constante de disipación no tiene 

un  efecto  distinto  al  caso  superficial  en  los  resultados.  Aunque  presenta  el  mismo  

comportamiento que en el caso vertical, esto es, a medida que la constante de disipación es  

mayor el efecto amplificador es mayor, no se puede considerar importante. 

Por último, en el caso del amortiguamiento el efecto de la constante de disipación es  

prácticamente nulo. 

9.4 Impedancias de cabeceo

Las  figuras  92  a  94  muestran  los  resultados  calculados  para  el  caso  de  cabeceo.  

Siguiendo la misma tendencia que en los anteriores casos, relaciones h /B  bajas implica una 

dependencia  de la  constante  de disipación mayor.  Pero esa  dependencia  baja  rápidamente,  

siendo prácticamente inexistente a partir de h /B=2 . 
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Figura 91: Impedancia horizontal. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 4
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Por último, aumentos de la relación  E /B , no tiene efectos distintos al caso superficial, 

siendo lo determinante la profundidad del nivel freático. 
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Figura 92: Impedancia de cabeceo. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 0,25
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Figura 93: Impedancia de cabeceo. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 0,5
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9.5 Impedancias de torsión

Por  último,  el  caso  de  torsión  es  el  que  presenta  un  comportamiento  más  estable  por 

cambios en la constante de disipación. Así, es el caso para el que se han resuelto menor cantidad de  

curvas. Los resultados se muestran en la figura siguiente (95):
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Figura 94: Impedancia de cabeceo. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grado de embebimiento E/B = 2
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Figura 95: Impedancia de torsión. Influencia de la constante de disipación para una profundidad del nivel freático  

variable. Grados de embebimiento E/B = 0,5 y E/B = 2
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Según  lo  ya  comentado,  la  constante  de  disipación  tiene  muy  poco  efecto  sobre  la  

impedancia de torsión.

9.6 Conclusiones

En el caso vertical se observó una fuerte influencia de la constante de disipación, siendo 

mucho más pronunciado cuando la relación h /B  es baja. En el amortiguamiento, solo se observó 

algo de dependencia para relaciones h /B  bajas y a altas frecuencias.

En el caso horizontal y de cabeceo, se vio poca dependencia, y solo cuando la profundidad 

del  nivel  freática  es  baja.  En  el  amortiguamiento,  prácticamente  no  había  dependencia  de  la 

constante de disipación. 

Por  último,  para  el  caso de  torsión,  la  influencia  de  la  constante  de disipación  en los  

resultados es prácticamente nula. 

De todo lo visto se concluye que la constante de disipación solo tiene  un efecto importante 

en el caso vertical para relaciones h /B  bajas, en menor medida en el caso vertical para relaciones 

h /B  altas, horizontal y de cabeceo y, prácticamente, nulo en el caso de torsión. 
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Capítulo 10 

Conclusiones y desarrollos futuros

10.1 Revisión y conclusiones

En este TFM se ha estudiado el cálculo de impedancias de cimentaciones no pilotadas que 

descansan sobre terreno seco, y que, a cierta profundidad, estará el nivel freático. Para ello se ha 

establecido un modelo con dos regiones. Una superior, poroelástica, sin agua en sus poros y otra 

inferior,  poroelástica también, pero considerada saturada (no admite más agua en sus poros). La 

interacción entre las dos regiones se ha establecido soldada y permeable. 

Para  su  estudio  se  ha  empleado  un  modelo  tridimensional  de  Elementos  de  Contorno 

desarrollado en el dominio de la frecuencia que permite resolver problemas en los que coexisten  

regiones de distinta naturaleza: elásticas o viscoelásticas, fluidas y poroelásticas. Las ecuaciones 

del MEC se aplican a cada una de regiones de forma individual para, posteriormente, acoplar el  

conjunto de forma rigurosa mediante ecuaciones adicionales de equilibrio y compatibilidad en las 

superficies en contacto que constituyen las interfases. 

En el capítulo 2 se expusieron los aspectos relacionados con la formulación de los medios 

implicados  en  este  TFM,  es  decir,  elásticos  y  poroelásticos,  que  se  incluyen  en  los  modelos 

acoplados que se  desarrollan posteriormente.  Se comenzó con un repaso de las  ecuaciones  de 

gobierno  y  de  la  propagación  de  ondas  en  los  distintos  tipos  de  medio.  Luego,  se  abordó  la 

formulación integral de las ecuaciones de gobierno en términos de las variables en el contorno y se  

mostró la solución fundamental armónica para cada tipo de región.

El capítulo 3 se dedicó a presentar una estrategia de solución de estos modelos mediante el 

Método de  los  Elementos  de  Contorno,  analizando las  dificultades  que  la  aplicación  del  método 

comporta. Se describieron los tipos de elementos utilizados y diversos aspectos relacionados con la 

discretización  del  contorno,  para  a  continuación  plantear  el  procedimiento  de  evaluación  de  las 
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integrales extendidas al contorno de los elementos  presentes en la formulación. Posteriormente, se 

definieron  las  posibles  condiciones  de  contorno  que  se  pueden  presentar  y  se  abordaron  las  

condiciones en las interfases cuando las regiones se encuentran acopladas. Finalmente, el último 

punto  se  dedicó  a  presentar  estrategias  para  evitar  problemas  numéricos  relacionados  con  la 

geometría de la discretización y con el acoplamiento entre regiones de distinta naturaleza.

El capítulo 4 se dedicó a mostrar el cálculo de impedancias de cimentaciones no pilotadas. 

Se describieron las particularidades que la aplicación del modelo acoplado MEC presenta a la hora 

de abordar  el  problema:  la  zapata  es  considerada como un sólido rígido y el  suelo en el  que  

descansa se caracterizó como un medio poroelástico. Dado que se empleó una nueva versión de  

código basado en MEC, el modelo propuesto se sometió a validación con resultados existentes en  

la bibliografía. 

Los  capítulos  5  y  6  se  dedicaron  a  la  validación  del  nuevo  código.  La  primera  fue 

reproducir  los  resultados  obtenidos  por  Domínguez  (1993)  para  una  zapata  circular.  Aquel 

problema se resolvió con un modelo axisimétrico. Dado que el código disponible funciona en 3D, 

se generó un cuarto de modelo con doble plano de simetría. Se obtuvieron impedancias verticales,  

horizontales, de cabeceo y torsión, presentando los resultados en forma normalizada. La segunda 

validación fue reproducir los resultados obtenidos por investigadores de la División hace algunos 

años.  Se  trataba  de  una  zapata  cuadrada  superficial,  la  cual  descansaba  sobre  un  terreno 

poroelástico. A partir de ahí, se calcularon distintas situaciones, bien añadiendo una segunda región 

inferior, o variando algunas propiedades. Tanto en el problema de Domínguez como en los de la  

división se pudo comprobar las excelentes prestaciones del nuevo código. 

El capítulo 7 se dedicó al estudio de la influencia del nivel freático sobre la impedancia. Se 

obtuvieron las impedancias verticales, horizontales, de cabeceo y torsión para distintos grados de 

embebimiento. Además, en los capítulos siguientes, primero, se comparó el modelo propuesto en 

este TFM con otro, utilizado habitualmente, para modelar el nivel freático, y, segundo, se estudió la 

influencia de la constante de disipación sobre los resultados. Las principales conclusiones que se  

extrajeron fueron:

• Se observa un aumento del rizado a medida que aumenta el enterramiento, siendo este efecto más  

pronunciado en impedancia vertical y horizontal, en menor medida en cabeceo, y, prácticamente,  

inexistente en torsión. Pero, a medida que crece la profundidad del nivel freático, las curvas tienden 

a seguir una recta con baja pendiente. 

111



Capítulo 10 

• El nivel freático tiene un efecto muy importante en impedancia de cabeceo a bajas frecuencias 

cuando la constante de disipación es elevada, disminuyendo este efecto drásticamente con un leve 

incremento de la profundidad del nivel. En el caso de impedancias vertical y horizontal, dado el 

efecto rizado que se produce con el aumento del enterramiento, los valores fluctúan. No obstante,  

se puede concluir que con el aumento del nivel freático, disminuyen las impedancias y presentan  

una  dependencia  importante  de  ese  factor.  Por  último,  en  el  caso  de  torsión,  se  observa  una 

dependencia prácticamente inexistente. 

• De la comparativa de modelos poroelástico-poroelástico vs sólido drenado-no drenado se puede 

extraer que ambos modelos son equivalentes. La diferencia es pequeña en la impedancia vertical y 

prácticamente inexistente en el resto.

• De todo lo anterior se concluye que la constante de disipación b  tiene un efecto importante sobre 

el  comportamiento  dinámico  de  la  cimentación,  siendo  especialmente  pronunciado  en  la 

impedancia  vertical.  En  general,  a  medida  que  aumenta  la  constante  b  se  obtienen  valores 

mayores de las impedancias dinámicas, tendiendo hacia los valores correspondientes a un suelo 

ideal elástico no drenado. 

De lo visto se puede concluir que el modelo poroelástico (bifásico) presenta importantes 

mejoras  respecto  del  monofásico,  para  estudiar  la  respuesta  dinámica  de  cimentaciones,  

compensando en esfuerzo computacional extra a realizar.

10.2 Desarrollos futuros

El  nuevo  software  desarrollado  disponible  presenta  una  prestaciones  excelentes  y  es 

adecuado para abordar líneas futuras de investigación. Así, siempre está abierta la posibilidad de 

mejora del código,  bien sea mejorando el entorno gráfico,  reduciendo el  tiempo de cómputo o 

añadiendo más prestaciones. Respecto de posibles líneas que afecten al campo de estudio de este  

TFM  se  puede  citar,  por  ejemplo,  el  estudio  de  zapatas  circulares  en  aplicaciones  de 

aerogeneradores. Este tipo de cimentaciones es muy utilizada en este tipo de estructuras, y se ha  

podido comprobar, con el primer problema de validación resuelto, las muy buenas prestaciones que 

presenta el  nuevo código MEC de la  División.  En este TFM se ha abordado la  resolución de 

zapatas que se pueden asimilar a un sólido rígido. Así, otra línea de investigación puede ser añadir 

flexibilidad a la cimentación. Como se comentó al inicio del TFM, este tipo de cimentaciones  

presenta un comportamiento distinto, y su respuesta dinámica se debe obtener para cada partícula.  
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Conclusiones y desarrollos futuros

Por último, la División ya tiene experiencia en el estudio de interacción de elementos, como, por  

ejemplo, pilotes. Así, otra línea puede ser el estudio de interacción de cimentaciones en parques,  

sean pilotadas o no, es decir, cómo afecta el comportamiento de una cimentación sobre el resto.  
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