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Abstract. A three-dimensional BE—FE model for the time harmonic analysis of bucket founda-
tions in poroelastic soils is presented. The soil follows the Biot’s poroelasticity and is discretized
using the BEM. The skirt of the bucket is modeled as a degenerated shell finite element. The
soil-structure interaction is taken into account assuming a crack-like boundary from the soil
point of view, where the Dual BEM is applied. It is shown that this simple representation is
accurate and efficient. This model is applied to an analysis of the impedances of bucket foun-
dations, where the influences of the foundation geometry and soil properties are studied. The
study shows that, when considering realistic seabed soils, a poroelastic model should be used
for the low-frequency range<{( 1 — 6 Hz depending on the seabed soil). It is shown that this is
particularly true for bucket foundations with small length to diameter ratios.
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1 INTRODUCTION

Bucket foundations (or suction caisson foundations) are used as anchors and foundations of
offshore platforms, and more recently as foundations of offshore wind turbines when suitable
water depths and soil conditions are encountered [1]. Foundations of offshore wind turbines ex-
perience important horizontal and moment loadings, which are larger for deeper waters. Single
bucket or monopod foundations are used for wind turbines installed at moderate water depths.
When monopod foundations are not enough to carry these loads, three or four small buckets
can be combined to form what are known as tripod or tetrapod foundations. In general, wind
turbines with bucket foundations are well suited for water depths between 20 to 50 meters [2].

Despite the experience gained from oil and gas industries, their application to wind turbines
faces several new challenges([1, 3]. They must be designed to withstand large horizontal forces
and overturning moments, and in addition these are of dynamic nature. These loads mainly
comes from steady-state operation of the machine (rotor rotation), wind field, water current
field, water waves, tidal effects, and earthquakes. Furthermore, the installation process and
the soil conditions of the seabed near the foundation introduce several uncertainties. These
designs should be able to operate under such conditions for a number of years in order to be
economically viable. Therefore, it is necessary to advance towards the development of rigorous
models able to take into account realistic conditions.

Many aspects of the installation and design of bucket foundations have been studied, and
the literature is large. A very complete review about bearing capacity and installation was
published by Foglia and Ibseni [4]. In the context of dynamics, a recent work of Kourkoulis et
al. [5] uses a non-linear FEM model to study the behaviour of bucket foundations of offshore
wind turbines under lateral monotonic, cyclic, and earthquake loading. They give an interesting
discussion about the interface conditions between soil and foundation. Liingaard &t al. [6]
studied the impedances of bucket foundations in elastic soils, including the variation of these
under changes of geometry and soil properties.

In the present work, dynamic stiffnesses of bucket foundations buried in poroelastic soils are
studied. A simple but accurate boundary element — finite element (BE—FE) model is developed
to this aim. Bucket foundations with different skirt length to diameter ratios buried in different
realistic seabed soils are considered. Also, the effect of different contact conditions between the
lid and the seabed is studied.

The rest of the paper is organized as follows. In Sedtion 2, the boundary element — finite
element model is described. In Sectidn 3, impedances of bucket foundations buried in different
poroelastic seabeds are obtained and discussed. Finally, in 9dction 4 the main conclusions are
given.

2 BE-FE MODEL

2.1 Conventional and Dual BEM for three-dimensional Biot’s poroelasticity

The soil is considered to be a homogeneous poroelastic half-space following the Biot’s theory
of poroelasticity. Given its unbounded nature, the BEM is used to numerically treat it. A
particular feature of the proposed model is that, unlike Liingaard €t lal. [6], the problem can be
handled directly without needing any artificial interfaces. This is achieved thanks to the usage
of the Dual BEM.
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The governing equations of Biot’s poroelasticity [7] in tira¢ domain can be written as:
pVu+V [(A 4 p+ Q*R) (V-u)+Q(V-U)] +X:p11ﬁ+p12U+b<1’1—U> @)
VIQ(V-w+R(V-U)+X = ppii+ ppU—b (- U) (2)

and the stress-strain relationships are:

7y =0y [(A+Q*/R) (V- u) + Q(V - U)| + pu(ugy +uji), i,5=1,23  (3)
r=Q(V-u)+R(V-U) 4)

whereu;, 7,; andX are respectively displacements, stresses and body forces in the solid phase,
andU;, 7 and X’ are respectively displacements, equivalent stress and body forces in the fluid
phase. The poroelastic medium has the following propertiesid;, are the Lamé’s parameters

of the solid phase() and R are the Biot’s coupling parameteisjs the dissipation constant,
andpi; = (1 — @)ps + pas P12 = —Pay P22 = Ppi + pa, DEINGH the porosity,p, the solid
phase density); the fluid phase density, ang the additional apparent density. The additional
apparent density, is obtained fromp, = (o — 1)¢pr, Wherea is the tortuosity([8]. The
dissipation constaritis related to the hydraulic conductivityby the relationship = prg¢?/k,
whereg is the gravitational acceleratian [9]. In the frequency domagiBquations[(IL{2) can be
written as:

pVu+V[(A+p+Q*/R)(V-u)+Q(V -U)| + X =-w’pyu—w?ppU (5)
v [Q (V . U) + R (V . U)] + X, = —w2,512u — WQﬁQQU (6)

wherepy; = p11 — ib/w, paa = pag — ib/w andpiy = p1o + ib/w. It is well known that three
bulk modes exists: two longitudinal modes (P1 and P2) and one transverse mode (S); and their
associated wavenumbers are denoted respectivély &sandks.

The BEM is based on the usage of Boundary Integral Equations (BIE), which are used to
build a solvable linear system of equations after its discretization. Dominguéez [10, 11] presented
a BEM based on a Singular BIE (SBIE) for two-dimensional Biot’s poroelasticity, and Maeso
et al. [12] extended it to three-dimensions. One of the advantages of this family of BIEs
over others is the reduction of the variables related to the fluid phase to two: the equivalent
stressr and the normal displacemedi,. Another advantage is the possibility of writing the
fundamental solution and its derivatives in a way that resembles the fundamental solutions of
acoustics and elastodynamics and their derivatives.

Let (2 be a poroelastic region, and= 0f2 its boundary with outward unit normal. Using
the weighted residual formulation proposed by Dominguez [10, 12], the SBIE at a collocation
pointx! can be written as:

SR A R R o
0 ¢y ] |uk r —Un i U, r L =T U tk @)
Ciu' +][ T udl = /U*t dr
I I

wherel, k = 1,2,3, andJ = 1/(pxw?). The vectoru contains the primary variables: fluid
equivalent stress and solid displacements,; andt contains the secondary variables: fluid
normal displacemerit,, = U;n; and solid tractiort, = 7;;n;. The superscripi}' is not an

8727



J.D.R. Bordbn, J.J. Aznarez, O. Maeso

index, and indicates that the corresponding variable isa@l@ the collocation point. The free-

term matrixC} contains the potential free-terehand the elastostatic free-ter}y, which are

¢ = 1anddj, = &y for an interior collocation pointf' € ), andc' = 1/2 andc}, = 1/24y, for

a smooth boundary collocation point'(€ I', I'(x') € C'). As usual, the notatiofi stands for

an integral in the Cauchy Principal Value (CPV) sense, which is evaluated as described in [12].
The Hypersingular BIE (HBIE) for two-dimensional problems was obtained by Bordon et

al. [13]. Likewise, the three-dimensional HBIE is built by establishing the secondary variables

at the collocation point:

U, =Upn;=—Jrin; — Zun; (8)

i i i i Q i i
— [)\umvmélj + ,LL (ul,j + uj,l)j| nj + ET nl (9)
whereZ = p15/ a2, n' is the unit normal vector at the collocation point, and the comma deriva-
tive notation denoted/dz}.. Therefore, a mix of the SBIE and its derivatives with respect to the
collocation point is required to build the HBIE. After carrying out all the required operations,
the HBIE at a collocation point' with unit normaln' can be written as:

o U A R £ R () o
Ik k r 0 °lk k r 0 "k k (10)
Ci;t' +7[ S*u dI’ :][D*t dr
r r

where the notatiorf stands for an integral in the Hadamard Finite Part (HFP) sense. The
presence of a HFP integral imposes that the primary variables at the collocation point must
have continuous first derivatives, i.e(x'), u,(x') € C'. Using this fact, a meaningful HBIE

can be obtained once a regularization process based on the work of Dominguez et al. [14] is
performed.

Equations[{I7) and_(10) correspond to BIEs for interior collocation points, or boundary col-
location points at ordinary boundaries. When the collocation point is located at a crack-like
boundary, both BIEs have to be modified. A crack-like boundary has two boundaries geomet-
rically coincident but with opposite orientations, denoted as positiad negative- faces.
Hence, the SBIE and HBIE when the collocation poihis located at a crack-like boundary
can be written as:

L0 g )G+ fraar= |
- T ru )+ Tudl'= [ Ut dl 11
2{0 5lk}(u u) r " r D

— ! —t! * — D>k
5 {0 M} (t t )—i—%FS u dI ZZF t dI (12)

where it has been assumed thak') € C'. Both Equationd(11) anf{112) have to be used simul-
taneously in order to solve problems where crack-like boundaries are present. When considered
this way, they are known as Dual BIEs, and their application to the BEM is called the Dual BEM
[15,[16]. As explained before, the HBIE requires théat!), ux(x') € C!, thus the collocation

at crack-like boundaries must be performed carefully. Aliabadi and co-workers [15, 16] use
discontinuous boundary elements with nodes already located at points where this condition is
fulfilled. Another approach is that of Dominguez et al.|[14], where standard continuous bound-
ary elements with multiple non-nodal collocation is used. The latter is considered in the present
work since, as it will become clear in the next section, continuous boundary elements are much
more appropriate for the proposed coupling.

i i
tl—lenj
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2.2 Degenerated shell finite element

The bucket foundation is considered to be a massless linear elastic solid. It is modelled
with degenerated shell finite elements. The degenerated shell FE has been formulated and
implemented following Ofnate [17], and a robust 8-noded quadrilateral element with reduced
integration is used.

2.3 BE-FE coupling

The BE-FE coupling is done at the level of discretized equations. The boundary element
mesh and the finite element mesh must be conforming. A perfect bonding between the mid-
surface of the shell and the crack-like boundary of the soil is considered. It means that rotations
are not taken into account in the coupling. Given the small thickness to length ratio of the
bucket skirt, their contribution can be neglected. Furthermore, since the bucket is made of steel,
an impermeable interface between the shell and the poroelastic soil is assumed.

Considem;, U;r, u;, 7+ andt; as respectively the unit normal, fluid normal displacement,
solid displacement, fluid equivalent stress and solid traction of the positive face of the crack-like
boundary (soil), and analogously for the negative face. Also, consjdes the displacement
of the mid-surface, and as the distributed load on the mid-surface. Then, the compatibility
and equilibrium coupling conditions between the crack-like boundary and the mid-surface of
the shell can be written as:

+ _ ,,tt - T + _ ,8 — _— 48
Un—ujnj,Un—ujnj,ui—ui, u; =u; 13)

it +tf g+t + 8 =0 (14)
3 IMPEDANCES OF BUCKET FOUNDATIONS

A bucket foundation is composed of a rigid lid with diametgrand a flexible skirt of length
L and thickness. Using six degrees of freedom at the center of the lid, it is possible to build an
impedance matri$ relating the forces and momemsproduced by unitary displacements and
rotationsU. Since buckets are axisymmetric, the impedance matrix has five differentimpedance
functions: horizontal§yy), vertical (Svv), rocking (Sniv), horizontal-rocking couplingun),
and torsional §1r). In the present paper, all impedance functions are studied except the tor-
sional one. For the sake of brevity, the same notation and normalization procedure as Liingaard
et al. [6] is used.

Elastic soils can be defined by a small set of properties, for example shear mpdRivis-
son’s ratiov, densityp and a hysteretic damping rato(u* = p(1 + i2£)). Hence, fully
dimensionless studies can be carried out by defining some shape factors of the structure, a di-
mensionless frequeney; with the help of a length of the structure and a wave velocity of the
soil, and setting the Poisson’s ratio and damping ratio of the soil. In the case of poroelastic soils,
this task becomes impractical due to the number of properties involved, and the difficulties of
knowing if a given set of values of the properties represents a realistic soil or not. For these
reasons, we have decided to use realistic seabed soils taken from Buchanan and_Gilbert [18],
see Tablé]l. All results are shown using a dimensionless frequgneywR/cg, whereR is
the radius of the bucket, ard| = \/u/(¢pr + (1 — ¢)ps) is the undrained S-wave velocity.

The bucket foundation is considered masslgss () kg/m?), with a Young’s modulugs =
210 GPa, Poisson’s ratiar = 1/4 and hysteretic damping ratto= 0.01 (£* = E(1 + i2¢)).
The diameter i) = 10 m, and the thickness = 0.05 m. Because of the nature of the BE-
FE coupling presented, the mass distribution through the soil-structure interface is continuous
according to the density of the soil despite the structure is considered massless.
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Coarse . . .
Property, symbol and units sand and Coarse Fine S||Ity Silty

fine gravel sand sand clay sand

(sbl) (sb2) (sh3) (sb4) (sh5)
Frame shear modult&e (1*) [MPa]  12.50 74.00 7.12 0.79 41.00
Frame shear modulds (*) [MPa]  4.50 4.70 0.23 0.03 7.90
Frame bulk moduluRe (K*) [MPa] 27.10 52.00 9.49 3.67 29.00
Frame bulk modulusm (K*) [MPa]  0.90 0.74 0.30 0.12 1.30
Poisson’s ratior [-] 0.30 0.02 0.20 0.40 0.02
Porosity¢ [-] 0.30 0.38 0.43 0.68 0.65
Fluid bulk modulusk; [GPa] 2.38 2.40 2.39 2.38 2.40
Biot's coupling paramatef) [GPa] 1.666 1.488 1.362 0.762 0.840
Biot's coupling paramateR [ GPa] 0.714 0.912 1.028 1.618 1.560
Fluid densityp; [kg/m?] 1000 1000 1000 1000 1000
Solid densityp, [kg/m?] 2680 2710 2670 2680 2670
Tortuositya [] 1.25 1.25 1.25 3.00 3.00
Additional apparent dem, [kg/m3] 75 95 107.5 1360 1300
Fluid viscosityn [mPa - s] 1.01 1.01 1.01 1.01 1.01
Permeabilitys [m?] 2.6-1071° 75.1071 3.1-107% 52-107% 6.3-1071°
Hydraulic conductivityk [m/s] 25-107% 73-100* 3.0-1007 51-1007 6.2-1078
Disipation constan [N - s/m?] 3.52-10° 1.95-10° 5.99-10° 8.98-10° 6.74-10'
Undrained Poisson’s ratig" [—] 0.4992153  0.4942119 0.4993609  0.4998878  0.4945113
Bulk densityp [kg/m?] 2176 2060 1952 1538 1585
Undrained S-wave velocit [m/s] ~ 75.8 189.5 60.4 22.6 160.9

Table 1: Properties of seabed soils taken from Buchanan To®}. poroelastic medium. Bottom: undrained solid.

Impedances are calculated using a BE-FE model based on the methodology described in
the previous section. Figufé 1 shows a mesh used in the calculations. Taking into account
the symmetric nature of the geometry, only one-quarter of the domain is discretized. The soill
region(); has three BE boundaries: the seabed free-suffage .., the soil-skirt interface
[son—skire (@ crack-like boundary), and the bucket Iigy. The skirt regiornf2,;.; is @ mesh of
degenerated shell FE. For the sake of clarity in Figlire 1, the@kist is not located at its real
position, which is exactly in the position ©f.;;_q..:. The seabed free-surfat@ec_gurtace IS @
permeable traction-free boundary, i.e.= 0 andt, = 0. The bucket lidl';;q has prescribed
fluid and solid displacements according to the impedance that is being being calculated. Shell
FE nodes in{ > 0,y > 0, z = 0) and inzz andyz symmetry planes are 6 DOF shell nodes,
while the rest are 5 DOF nodes. By doing so, itis easy to establish the prescribed displacements
and rotations to the 6 DOF nodes according to the impedance that is being calculated and the
symmetric/anti-symmetric conditions imposed by the displacement field. Bgth,.;,: and
Qqre are discretized with conforming meshes of 8-noded quadrilateral elements. Boundaries
['iq andTee—surtace @re discretized with 6-noded triangular elements. The size of the elements
of the foundation and its surroundings is at least of 6 elements per wavelength, while at least 4
elements per wavelength is used beyond it.

3.1 Validation

In order to check the validity of the formulation and the models, a comparison between
several results of Liingaard et dl.| [6] and results from our BE-FE model is done. Eigure 2 shows
impedances (normalized magnitude and angle) for bucket foundations with several length to
diameter ratiod./D = {1/4,1,2}. The given elastic soil properties gie= 1 MPa, v = 1/3
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I_‘free— surface

1_\lid

Psoil—skirt

stirt

Figure 1: Description of a mesh used in the calculatidn&d{ = 1)

and¢ = 0.025. In our model, the same properties are used for the solid, the fluid is considered
to be air, and a small porosity is used— 0. Figure[2 demonstrates complete agreement
between results. Although not shown here, all other static and dynamic results presented in [6]
also agree with results obtained by our model.

3.2 Results and discussion

Seabed soils taken from Buchanan and Gilberit [18], see Table 1, cover a wide range of possi-
ble realistic soils, from gravels, sands, silts, to clays. These soils are denoted as “sb1” to “sb5” in
the following tables and graphs. Three length to diameter ratids = {1/4, 1,2} are studied.
Table[2 shows the dimensionless quasi-static stiffnesses for all cases, where they are calculated
for a small dimensionless frequeney = 10~¢. Nondimensionalization of impedances is per-
formed using the shear modulusof the soil and the radiug of the bucket. Figurels|3 {d 5
show the impedances for all cases, where in the low-frequency rapge[(0~¢, 1]) only their
magnitudes are analysed, and in a broader frequency range (0, 6]) also their angles are
shown. Taking into account the definition of the dimensionless frequeytiye low-frequency
range corresponds approximately to frequencies bélews Hz depending on the seabed soll.
Also, the broader frequency range corresponds approximately to frequencies betwééiy.
and40 Hz depending on the seabed soil.

Dimensionless quasi-static stiffnesses are similar in magnitude to those obtained by Liin-
gaard et al[[6] for elastic soils, considering the seabed as a drained elastic soil. In fact)] Table 2
includes the results using an elastic solid with the drained conditions of the porous medium, and
the discrepancy is small. Differences are due to a not sufficiently small dimensionless frequency
for the calculation of the quasi-static stiffness.

As can be seen in the left hand side graphs of Fidures 3 to 5, impedance functions are almost
constant and approximately equal to the quasi-static value in the low-frequency range. This is
characteristic of any elastic soil, which is even more smooth. In the case of poroelastic soils,
the smaller length to diameter ratio the less regular behaviour at low-frequencies. In the case
of buckets withL./ D = 1/4, it is very noticeable the variation of impedances whgn— 0.

8731



J.D.R. Bordbn, J.J. Aznarez, O. Maeso

3n/4
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abs(Sy)/Kyy
arg(Syp)
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arg(Syy)
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/2

abs(Syv)/Kyim
arg(Syp)
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Lii
Present: L/D=1/4 +
Liingaard: L/D=1

Present: L/D=1

/2 Liingaard: L/D=2 —
Present: L/D=2 X

0 | | |

0 2 4 6 8 10

8

abs(Syp)/Kvu
arg(%\/]]—[)
=

Figure 2: Comparison between Liingaard et al. [6] and thegureapproach. From top to bottom: normalized
horizontal, vertical, rocking, and horizontal-rocking coupling impedances.
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Figure 3: Impedances of bucket foundations withD = 1/4 in poroelastic soils. From top to bottom: horizontal,
vertical, rocking, and horizontal-rocking coupling impedances normalized with respect to the corresponding quasi-
static stiffness.
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Figure 4: Impedances of bucket foundations withD = 1 in poroelastic soils and corresponding undrained
elastic soils (dashed lines) . From top to bottom: horizontal, vertical, rocking, and horizontal-rocking coupling
impedances normalized with respect to the corresponding quasi-static stiffness using the poroelastic soil.
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Figure 5: Impedances of bucket foundations withD = 2 in poroelastic soils. From top to bottom: horizontal,
vertical, rocking, and horizontal-rocking coupling impedances normalized with respect to the corresponding quasi-
static stiffness.
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Quasi-static stiffness Seabed ;
(porous:ay = 1079) soil D1
Porous Porous Drained Porous
sbl 7774 13.073  13.116 (0.3%)  16.137
sb2 6.186 8.900 8.892 (0.1%) 9.385
Kyn sb3 7.445 13.198 12.175 (7.8%) 17.754
sb4 8.065 14.516 14.069 (3.1%) 21.614
sb5 7.216 11.525 9.956 (13.6%) 12.723
sbl 7.557 11.288 11.336 (0.4%) 15.502
sb2 5.822 8.954 8.946 (0.1%) 11.952
Kvv sh3 7.483  11.662  10.124 (13.2%)  16.013
sb4 8.403  12.321 11.58 (6.0%) 16.731
sb5 7.904 11.849 9.283 (21.7%) 15.407
sbl 8.739 47.368 47.48 (0.2%) 131.429
sb2 7.066  28.100  28.096 (0.0%)  44.571
Kywm sb3 8.003 46.973 46.246 (1.5%) 153.538
sh4 8.993 53.106 52.728 (0.7%)  217.156
sbb5 7.581 35.139 34.53 (1.7%) 68.016
sbl —2.778 —15.539 —15.572(0.2%) —30.881
sbh2 —2.464 —8.816 —8.806 (0.1%) —10.950
Kyvu sb3 —2.729 —16.036 —15.307 (4.5%) —37.250
sb4 —2.700 —17.923 —17.561 (2.0%) —51.545
sb5  —2.550 —11.751 —11.112(5.4%) —17.182

=1 =2

Ol
Ol

Table 2: Quasi-static stiffnesses of the studied bucketdatians and seabed soils

The effect is due to the permeability of the porous medium, the smaller permeability the more
pronounced variation. It is more relevant for buckets with smaller length to diameter ratios
because of the relevance of the compressional interaction of the bucket lid with respect to the
total impedance.

In Figurel4, results of the corresponding undrained elastic soils are included, and they are
normalized with respect to the quasi-static stiffnesses of the correspoding porous media. Along
the low-frequency range (except when— 0), it is quite clear that neither the drained nor the
undrained elastic soil is able to reproduce the real poroelastic behaviour.

The right hand side and central graphs of Figures Blto 5 show impedance functions for
a broader frequency range,(= [0,6]). By comparing these graphs and those obtained by
Liingaard et al. [[6] for elastic soils, the same qualitative behaviour is observed. For small
length to diameter ratios, results tend to the solution of a disc foundation, while for larger ratios
results tend to the solution of an infinite hollow cylinder. As shown in Figlire 4, the behaviour
is not only qualitatively similar, but also numerically if the corresponding undrained elastic soil
is used. The difference between the real poroelastic soil and the undrained elastic soil is very
small.

4 CONCLUSIONS

In this paper, a simple, efficient and accurate three-dimensional BE-FE dynamic model able
to directly manage bucket foundations in poroelastic soils is presented. The model makes use
of the Dual Boundary Element Method in order to avoid using any artificial boundary in the
discretization when thin open structures are buried in soils.

In this work, results of impedance functions for horizontal, vertical, rocking and horizontal-
rocking coupling modes of bucket foundations buried in poroelastic soils are presented. A
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realistic set of seabed soils are used to obtain the impedaftdes shown that the poroelastic
nature of the seabed soil should be considered when studying a problem in the low-frequency
range € 1—6 Hz depending on the seabed soil). This is particularly true for bucket foundations
with small length to diameter ratios.
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