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Preface

Madrid, 20 de Junio de 2018,

La dinámica estructural es un campo de interés común y de importancia creciente en diversas
especialidades de la ingeniería y de la ciencia. Mientras que en algunos campos como las máquinas o
los vehículos de transporte ha sido siempre un elemento básico, en otros como la ingeniería civil y la
arquitectura, más preocupados tradicionalmente con la estática, se ha convertido en un aspecto muy
relevante.

Esta primera conferencia a nivel nacional pretende ser un foro en el que tengan cabida los trabajos de
investigación, desarrollo y aplicaciones, permitiendo la discusión, difusión, contacto con otros grupos y
establecimiento de colaboraciones. Se organiza con proyección internacional y europea, contando con
el apoyo de la European Association for Structural Dynamics (EASD) organizadora de los congresos
EURODYN, así como con el apoyo de la Sociedad Española de Métodos Numéricos (SEMNI).

La participación incluye tanto trabajos basados en métodos teóricos y computacionales como
experimentales. Por otra parte abarca todos los campos de la dinámica estructural, como son la
ingeniería mecánica, el transporte, ingeniería civil y arquitectura, ingeniería sísmica e ingeniería de
materiales. Aunque ubicados en especialidades de ingeniería distintas todos estos campos comparten
conceptos y métodos comunes de dinámica.

Esta primera conferencia pretende iniciar una serie que se desarrolle de forma periódica. Asimismo
se propone constituir una Asociación Española de Dinámica Estructural que articule las actividades
de colaboración y difusión, y que sirva de interlocutora con otros órganos nacionales e internacionales
como la EASD.

Desde el comité organizador queremos dar la bienvenida a todos los participantes y ponernos a
disposición para el desarrollo de la conferencia.

José María Goicolea Ruigomez

Catedrático de Universidad,
ETS de Ingenieros de Caminos,

Universidad Politécnica de Madrid
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KINEMATIC BENDING MOMENTS IN OWT MONOPILES AS A
FUNCTION OF THE GROUND TYPE

Luis A. Padrón, Javier Herrera, Juan J. Aznárez and Orlando Maeso
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Abstract. Offshore wind energy has already proven to be a competitive technology for contributing to
the generation of renewable electrical energy. With costs falling very rapidly as the technology matures,
the capacity installed, for instance, in Europe, grew a significant 25% in 2017, with 13 new offshore
wind farms and additional 3.1 GW. This expansion will lead to the installation of offshore wind turbines
(OWT) in locations even more challenging from the geotechnical point of view, with greater depths, less
capable soils and/or increasing seismic risk. In order to contribute to the field of earthquake resistant
design of foundations for OWTs, this papers tackles the computation of kinematic bending moments in
OWT monopiles, which is the most common type of foundation in this kind of structures. A parametric
study involving different foundations and geotechnical profiles was carried out, involving large diameter
monopiles, realistic material and geometrical properties for soils and pile, and a large set of layered
soil profiles. For each case, compatible earthquake excitation, described through the elastic response
spectra provided by Eurocode 8 - Part 1 for each ground type, is used. Kinematic bending moments
were estimated using a Beam-On-Dynamic-Winkler approach. For these large–diameter monopiles, the
peak bending moments are not necessarily found in the interfaces between strata, as observed with not
so large diameters. Results are presented as a function of the ground type (according to Eurocode 8)
and an empirical regression, based on the parameter cs,30, for the estimation of a normalized maximum
kinematic bending moments is proposed. As expected, the largest kinematic bending moments arise for
C, D and E ground types.

Key words: Offshore wind turbines, piles, kinematic interaction, earthquake response

1 INTRODUCTION

This paper summarizes the results of a para-
metric study on the kinematic bending moments
arising in OWT monopiles embedded in different
soil profiles. Results are synthesized so that they
can be used to estimate these maximum moments
as a function of the average value of the S waves
velocity in the upper 30 m of the soil profile (cs,30).

2 PROBLEM DEFINITION

Four different steel pipe monopile configura-
tions, defined by two different pile external diam-
eters D and two different slenderness ratios L/D
are considered (see Table 1). Steel Young’s mod-
ulus, density and Poisson’s ratio of E = 210GPa,
ρ = 7850 kg/m3 and ν = 0.25, respectively, have
been adopted. The minimum pile wall thickness

1
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Table 1: Pile configurations.

Configuration L (m) D (m) t (mm) L/D δ = Dint/D

1 10.5 3.5 41.37 3 0.97636
2 24.5 3.5 41.37 7 0.97636
3 18.0 6.0 66.37 3 0.97788
4 42.0 6.0 66.37 7 0.97788

recommended by the API 2A-WSD [1] is adopted.
Two different boundary conditions at the pile head
(free head and zero–rotation head are considered).

These monopiles are assumed to be embedded in
28 different soil profiles ranging from homogeneous
half-space (profiles 1 to 4) to layered soils charac-
terized by 6 layers over an stiff half-space (profile
12). These profiles are defined in Table 2, where h
is the depth of the layer, ρs is the soil density and
Gs is the elastic shear modulus, with each layered
modeled as a viscoelastic region with 5% histeretic
damping and a 0.3 Poisson’s ratio. The table also
presents the corresponding ground type according
to the EC-8 classification.

The system is assumed to be subjected to
vertically–incident S seismic waves producing
ground surface earthquake motions compatible
with the corresponding Eurocode 8 type 1 elas-
tic response spectrum for 5% damping, with ag =
0.25 g. Three different artificial earthquakes are
used for each soil configuracion.

3 METHODOLOGY

The time histories of the bending moments
along the piles are computing through the fre-
quency domain method of response using the Fre-
quency Response Functions obtained from an effi-
cient semi-analytical harmonic Beam-On-Dynamic
Winkler model [2, 4] of the problem in which the
pile is modelled as a linear–elastic Euler–Bernoulli
beam, and the expressions provided by Novak et
al. [3] are used to model the soil response as a se-
ries of independent horizontal viscoelastic springs
and dashpots. Maximum bending moments at a
given depth computed for any time during the seis-
mic excitation are used to build bending moment
envelopes from which the maximum bending mo-
ments at any depth shown below are obtained.
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Figure 1: Maximum kinematic bending moments
as a function of ground type and pile configuration.
Free head (top) and Zero–rotation head (bottom)
boundary conditions

4 RESULTS

Figure 1 summarizes the results as maximum
bending moments, at any depth, for each ground
type, pile configuration and boundary condition
at the pile head. Each point represents one spe-
cific case (given pile configuration and soil profile).
The results are presented in figure 2 as a function
of the parameter cs,30 together with a representa-
tion of the regression analysis performed on the
data. For each boundary condition and pile con-
figuration, an expression of the type Mmax(cs,30) =

2
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Table 2: Definition of soil profiles.

Profile cs,30 (m/s) Ground Type h (m) cs (m/s) ρs (kg/m3) Gs (MPa)

P1 160 D 0-42 160 2000 51.20
P2 250 C 0-42 250 2000 125.0
P3 400 B 0-42 400 2000 320.0
P4 800 A 0-42 800 2500 1600.0
P5 A 93.33 D 0-5 (5-42) 70 (100) 1650 (1750) 8.08 (17.50)
P5 B 113.75 D 0-5 (5-42) 70 (130) 1650 (2000) 8.08 (33.80)
P5 C 131.77 D 0-5 (5-42) 70 (160) 1650 (2000) 8.08 (51.20)
P5 D 175.00 D 0-5 (5-42) 70 (250) 1650 (2000) 8.08 (125.0)
P5 E 224.00 C 0-5 (5-42) 70 (400) 1650 (2000) 8.08 (320.0)
P5 F 292.14 E 0-5 (5-42) 70 (800) 1650 (2500) 8.08 (1600.0)
P6 A 87.50 D 0-10 (10-42) 70 (100) 1650 (1750) 8.08 (17.50)
P6 B 101.11 D 0-10 (10-42) 70 (130) 1650 (2000) 8.08 (33.80)
P6 C 112.00 D 0-10 (10-42) 70 (160) 1650 (2000) 8.08 (51.20)
P6 D 134.62 D 0-10 (10-42) 70 (250) 1650 (2000) 8.08 (125.0)
P6 E 155.55 D 0-10 (10-42) 70 (400) 1650 (2000) 8.08 (320.0)
P6 F 178.72 E 0-10 (10-42) 70 (800) 1650 (2500) 8.08 (1600.0)
P7 A 154.07 D 0-5 (5-42) 130 (160) 2000 (2000) 33.80 (51.20)
P7 B 216.66 C 0-5 (5-42) 130 (250) 2000 (2000) 33.80 (125.0)
P7 C 297.14 C 0-5 (5-42) 130 (400) 2000 (2000) 33.80 (320.0)
P7 D 430.34 B 0-5 (5-42) 130 (800) 2000 (2500) 33.80 (1600.0)
P8 A 148.57 D 0-10 (10-42) 130 (160) 2000 (2000) 33.80 (51.20)
P8 B 191.18 C 0-10 (10-42) 130 (250) 2000 (2000) 33.80 (125.0)
P8 C 236.36 C 0-10 (10-42) 130 (400) 2000 (2000) 33.80 (320.0)
P8 D 294.34 E 0-10 (10-42) 130 (800) 2000 (2500) 33.80 (1600.0)
P9 140.54 D 0-5 130 2000 33.80

5-10 100 1750 17.50
10-42 160 2000 51.20

P10 200.00 C 0-5 160 2000 51.20
5-10 130 2000 33.80
10-42 250 2000 125.0

P11 201.82 E 0-5 70 1650 8.08
5-10 130 2000 33.80
10-15 250 2000 125.0
15-42 800 2500 1600.0

P12 179.22 E 0-5 70 1650 8.08
5-10 100 1750 17.50
10-15 130 2000 33.80
15-20 160 2000 51.20
20-25 250 2000 125.0
25-30 400 2000 320.0
30-42 800 2500 1600.0

3
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Table 3: Regression coefficients for each case

Free head Zero-rotation head

Conf. a b d E2 S a b d E2 S

1 −9.5 · 10−5 0.049 -1.9 1462.0 4.3 5.3 · 10−5 -0.093 31.1 6947.2 9.4
2 −1.1 · 10−5 -0.017 11.5 1215.3 3.9 3.6 · 10−4 -0.26 47.1 790.6 3.2
3 −2.6 · 10−5 0.13 -1.4 6875.7 9.4 −3.5 · 10−5 -0.17 86.3 21896.2 16.8
4 1.8 · 10−4 -0.20 68.5 7457.5 9.8 2.4 · 10−3 -1.58 269.3 42683.2 23.4

a c2s,30+b cs,30+d has been fitted to the results. The
fitted parameters for each case are given in Table 3,
together with the root mean square of the residu-
als S =

√
E2/N , with N the number of degrees of

freedom of the regression and E2 the weighted sum
of the squares residual.
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Figure 2: Maximum kinematic bending moments
as a function of cs,30 and pile configuration.
Free head (top) and Zero–rotation head (bottom)
boundary conditions

5 CONCLUSIONS

Seismic kinematic bending moments of 4 differ-
ent offshore wind turbine monopiles in 28 differ-
ent layered soil profiles have been computed for

three different compatible earthquake signals and
two different boundary conditions at the pile head,
making a set of 672 cases modelled through a
Beam–On–Dynamic Winkler formulation.

The largest maximum kinematic bending mo-
ments are obtained for D ground types (Deposits
of loose–to–medium cohesionles soil or of predom-
inantly soft–to–firm cohesive soil with cs,30 <
180m/s. The value of these maximum kinematic
bending moments are fitted to quadratic polyno-
mials that can be used during the initial stages
of the analysis and design of these foundations in
earthquake–prone areas.
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