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Preface

Madrid, 20 de Junio de 2018,

La dinámica estructural es un campo de interés común y de importancia creciente en diversas
especialidades de la ingeniería y de la ciencia. Mientras que en algunos campos como las máquinas o
los vehículos de transporte ha sido siempre un elemento básico, en otros como la ingeniería civil y la
arquitectura, más preocupados tradicionalmente con la estática, se ha convertido en un aspecto muy
relevante.

Esta primera conferencia a nivel nacional pretende ser un foro en el que tengan cabida los trabajos de
investigación, desarrollo y aplicaciones, permitiendo la discusión, difusión, contacto con otros grupos y
establecimiento de colaboraciones. Se organiza con proyección internacional y europea, contando con
el apoyo de la European Association for Structural Dynamics (EASD) organizadora de los congresos
EURODYN, así como con el apoyo de la Sociedad Española de Métodos Numéricos (SEMNI).

La participación incluye tanto trabajos basados en métodos teóricos y computacionales como
experimentales. Por otra parte abarca todos los campos de la dinámica estructural, como son la
ingeniería mecánica, el transporte, ingeniería civil y arquitectura, ingeniería sísmica e ingeniería de
materiales. Aunque ubicados en especialidades de ingeniería distintas todos estos campos comparten
conceptos y métodos comunes de dinámica.

Esta primera conferencia pretende iniciar una serie que se desarrolle de forma periódica. Asimismo
se propone constituir una Asociación Española de Dinámica Estructural que articule las actividades
de colaboración y difusión, y que sirva de interlocutora con otros órganos nacionales e internacionales
como la EASD.

Desde el comité organizador queremos dar la bienvenida a todos los participantes y ponernos a
disposición para el desarrollo de la conferencia.

José María Goicolea Ruigomez

Catedrático de Universidad,
ETS de Ingenieros de Caminos,

Universidad Politécnica de Madrid
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Abstract. Soria arch dam and reservoir is the largest infrastructure of this type that exists in 
the Canary Islands both in capacity (32 hm3) and height (120 m). It is located in the south of 
the Island of Gran Canaria, between the municipalities of Mogán and San Bartolomé de 
Tirajana. 
 
The goal of this paper is the development of a numerical model for the analysis of the 
dynamic and seismic behavior of this arch dam.  The model includes both the concrete arch 
dam and the surrounding area, so that soil-structure interaction phenomena can be taken into 
account as accurately as possible. On the contrary, the water-soil-structure interaction effects 
are not included in the model. The model is used to evaluate the magnitude of soil-structure 
interaction and also the influence of the accuracy of the geometrical representation of the 
surrounding topography on such soil-structure interaction effects.  
 
To do so, two different numerical models are built. On the one hand, a Finite Element Model 
of the actual geometry of the concrete dam wall is developed and used to perform a modal 
analysis of the fixed-base model. Then, several three-dimensional frequency-domain 
Boundary Element models of both the concrete dam and the surrounding topography are built. 
All of these models include the actual geometry of the dam wall and different approximations 
of the surrounding soil, ranging from a very simplified straight prismatic canyon to an 
elaborate model of the actual topography. These BEM models are used not only to estimate 
compliant-base natural frequencies and mode shapes, but also to study the seismic response of 
the system when subjected to incident planar seismic waves. 
 
The results show that the influence of the soil—structure interaction effects on the dynamic 
response of the system is quite significant. At the same time, the relevance of developing a 
very precise mesh of the surroundings is not important when studying the dynamic response 
of the dam itself, unless the response around the abutments is of interest. 

 

Key words: Arch dam, Boundary Element Method, dynamic soil—structure interaction. 
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1 INTRODUCTION 

Located in the south of the Island of Gran 
Canaria, between the municipalities of Mogán 
and San Bartolomé de Tirajana, the Soria dam 
is a concrete double-curvature arch dam. The 
structure was constructed from 1962 to 1972. 
It is 120 meters in height (above foundation) 
and with a thickness of the crown cantilever 
decreasing from 17,30 m at the base to 3 m at 
the crest. It is provided with 5 galleries inside 
its body [1]. Some pictures of Soria dam are 
shown in Fig. 1. 

 

Fig. 1 : Soria arch dam (Gran Canaria). 
 
The present study aims at building a three-

dimensional numerical model for the analysis 
of the dynamic and seismic behavior of the 
Soria arch dam, that can later be used for 
monitoring the structural health of this 
infrastructure. In order to do so, the influence 
of the soil-structure interaction effects, and of 
the accuracy of the geometrical representation 
of the surrounding topography, will need to 
be assessed.  

2 METHODOLOGY 

Firstly, a geometrical model was 
developed consisting of two parts: the dam 
wall and the canyon. The geometry of the 
dam wall was constructed according to the 
information gathered from a specific study 
made in 1991 [2]; on the other hand, a 
geometrical representation of the actual 
canyon and surroundings was obtained from 
topographic information available in the 
databases of Gobierno de Canarias [3]. 

Secondly, a modal analysis was carried 
out. For that, a 3D finite element model of the 
dam wall was developed to obtain the mode 
shapes of vibration of the fixed-base model. 
The finite element mesh corresponding to the 
geometry of the dam wall was constructed by 
means of 4250 tetrahedral 3D elements and 
7805 nodes (Fig. 2). For the Finite Element 
Analysis, Code_Aster was used, which is a 
Finite Element Analysis software engine [4]. 

  
Fig. 2: 3D mesh used for the FEM analysis. (a) 
downstream side view (b) upstream side view. 

 
Thirdly, harmonic analyses of the system, 
considering both fixed- and compliant-base 
configurations, were carried out using the 
multidomain Boundary Element Method code 
in the frequency domain described in Maeso 
et al. [5]. Wall and surrounding ground are 
modelled as coupled homogeneous 
viscoelastic media. In this case, the Boundary 
Element Method allows to take intrinsically 
into account the unbounded character of the 
soil medium, without the need of absorbing 
boundaries or any other mathematical artifact. 
On the contrary, the free-field mesh is 
truncated at a distance such that only the 
scattered wave fields are sufficiently damped. 
Nine-node quadrilateral elements and six-
node triangular boundary elements are used to 
mesh the boundaries. 
  

Fig. 3 shows the boundary element mesh 
used for the fixed-base model. At the same 
time, the influence of soil-structure 
interaction and of the accuracy of the 
geometrical representation of the surrounding 
topography on such soil-structure interaction 
effects needs to be evaluated. In order to do 

(a) (b) 
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so, three of the BE discretizations are used. 
Figures 4, 5 and 6 show the actual geometry 
of the dam wall and different approximations 
of the surrounding soil, from a straight 
prismatic canyon with two different amounts 
of free-surface (Fig. 4 and 5, for free-surface 
extensions equal to two or three times the 
height of the dam wall) to a model of the 
actual topography (Fig. 6).  

  

Fig. 3: 3D mesh used for the BEM analysis of the 
dam wall. (a) downstream side view (b) upstream side 

view.  

 
Fig. 4: BE model, prismatic canyon. Extension of the 

free-field discretization: 240 m 

 
Fig. 5: BE model, prismatic canyon. Extension of the 

free-field discretization: 360 m 

 
Fig. 6: BE model. Approximation of the actual 

topography of the canyon. Extension of the free-field 
discretization: 240 m 

The node studied is approximately located 
at the midpoint of the dam crest, so frecuency 
response functions obtained by BE method in 
this node will be plotted for 4 cases: Fixed-
base, and compliant-base with different 
geometries (Fig 4, 5 and 6). On the one hand, 
in the fixed-base analysis, a unit harmonic 
horizontal displacement along the upstream 
direction was given at the abutment of the 
dam; on the another hand, for the compliant 
analysis, the system is assumed to be 
impinged by seismic time-harmonic plane 
waves. For this analysis, it was assumed that 
the incident wave field consists solely of 
plane SH waves propagating vertically with a 
horizontal upstream free-field ground 
surface motion (upstream). 

The concrete dam wall and the foundation 
rock material are assumed to be viscoelastic 
with the properties shown in Table 1 [1, 6]. 
 

 Property  Dam concrete Foundation rock 
Shear modulus,  G (MPa) 8167 12083 

Mass density,  (kg/m3) 2300 2143 
Poisson’s ratio,  0,2 0,2 

Internal damping ratio,  0,01 0,01 

Table 1: Material properties 

4 RESULTS  

The first three symmetrical mode shapes of 
vibration obtained with a modal analysis of 
the fixed-base FEM model, together with the 

(a) (b) 
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modes infered from the harmonic analysis 
with the fixed-base BEM model, are shown in 
Figure 7. A very good agreement is observed 
between the two sets of results, in terms of 
both frequency and shape, which contributes 
to validate the BE wall mesh used below in 
the compliant-base analysis. 

  
Frecuency 5 Hz 

  
Frecuency 6,4 Hz 

  
Frecuency 7,8 Hz 

(a) (b) 

Fig. 7: Symmetrical mode shapes : (a) FEM ; (b) BEM. 

The frequency response functions obtained 
with the frequency domain analysis of the 
fixed-base and compliant-base models with 
different geometries at the node studied are 
plotted in Fig. 8.  

Fig. 8: FRFs. Transversal response of the midpoint of 
the dam crest. 

5 CONCLUSIONS 

The frequency-domain analyses carried out 
show that the soil—structure interaction has 
an important influence on the seismic 
response of the dam wall (the vibration 
frequencies on compliant base are 7% lower 

than in fixed base); nevertheless, the actual 
topography of the canyon around the dam 
wall seems to have a very low influence. 

After having estimated the most relevant 
natural frequencies and modal shapes of the 
structure, an experimental campaign will be 
carried out in order to extract the empirical 
dynamic properties of the system and perform 
a model updating procedure on the numerical 
model presented herein. 
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