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Preface

Madrid, 20 de Junio de 2018,

La dindmica estructural es un campo de interés comun y de importancia creciente en diversas
especialidades de la ingenieria y de la ciencia. Mientras que en algunos campos como las méquinas o
los vehiculos de transporte ha sido siempre un elemento basico, en otros como la ingenieria civil y la
arquitectura, mas preocupados tradicionalmente con la estética, se ha convertido en un aspecto muy
relevante.

Esta primera conferencia a nivel nacional pretende ser un foro en el que tengan cabida los trabajos de
investigacion, desarrollo y aplicaciones, permitiendo la discusion, difusiéon, contacto con otros grupos y
establecimiento de colaboraciones. Se organiza con proyecciéon internacional y europea, contando con
el apoyo de la European Association for Structural Dynamics (EASD) organizadora de los congresos
EURODYN, asi como con el apoyo de la Sociedad Espanola de Métodos Numéricos (SEMNTI).

La participacion incluye tanto trabajos basados en métodos tebricos y computacionales como
experimentales. Por otra parte abarca todos los campos de la dinamica estructural, como son la
ingenieria mecanica, el transporte, ingenierfa civil y arquitectura, ingenieria sismica e ingenieria de
materiales. Aunque ubicados en especialidades de ingenieria distintas todos estos campos comparten
conceptos y métodos comunes de dinamica.

Esta primera conferencia pretende iniciar una serie que se desarrolle de forma periddica. Asimismo
se propone constituir una Asociacién Espanola de Dinamica Estructural que articule las actividades

de colaboracién y difusiéon, y que sirva de interlocutora con otros érganos nacionales e internacionales
como la EASD.

Desde el comité organizador queremos dar la bienvenida a todos los participantes y ponernos a
disposicion para el desarrollo de la conferencia.

José Marfa Goicolea Ruigomez

Catedratico de Universidad,
ETS de Ingenieros de Caminos,
Universidad Politécnica de Madrid
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NUMERICAL MODEL FOR THE ANALYSISOF THE DYNAMIC
RESPONSE OF THE SORIA DAM INCLUDING SOIL—STRUCTURE
INTERACTION

J.C. Galvan, L.A. Padroén, J.J. Aznarez, O. Maeso
Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingenieria
(SIANI) Universidad de Las Palmas de Gran Canaria
Edificio Central del Parque Cientifico y Tecnol6gico
Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Spain

e-mail: jgalvan@diea.ulpgc.es
ORCID: 0000-0001-8515-0881

Abstract. Soria arch dam and reservoir is the largest infrastructure of this type that exists in
the Canary Islands both in capacity (32 hm®) and height (120 m). It is located in the south of
the Island of Gran Canaria, between the municipalities of Mogan and San Bartolomé de
Tirgjana

The goal of this paper is the development of a numerica model for the analysis of the
dynamic and seismic behavior of this arch dam. The model includes both the concrete arch
dam and the surrounding area, so that soil-structure interaction phenomena can be taken into
account as accurately as possible. On the contrary, the water-soil-structure interaction effects
are not included in the model. The model is used to evaluate the magnitude of soil-structure
interaction and aso the influence of the accuracy of the geometrical representation of the
surrounding topography on such soil-structure interaction effects.

To do so, two different numerical models are built. On the one hand, a Finite Element Model
of the actual geometry of the concrete dam wall is developed and used to perform a modal
analysis of the fixed-base model. Then, severad three-dimensional frequency-domain
Boundary Element models of both the concrete dam and the surrounding topography are built.
All of these models include the actual geometry of the dam wall and different approximations
of the surrounding soil, ranging from a very simplified straight prismatic canyon to an
elaborate model of the actual topography. These BEM models are used not only to estimate
compliant-base natural frequencies and mode shapes, but aso to study the seismic response of
the system when subjected to incident planar seismic waves.

The results show that the influence of the soil—structure interaction effects on the dynamic
response of the system is quite significant. At the same time, the relevance of developing a

very precise mesh of the surroundings is not important when studying the dynamic response
of the dam itself, unless the response around the abutmentsiis of interest.

Key words: Arch dam, Boundary Element Method, dynamic soil—structure interaction.
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1 INTRODUCTION

Located in the south of the Island of Gran
Canaria, between the municipalities of Mogan
and San Bartolomé de Tirgjana, the Soria dam
is a concrete double-curvature arch dam. The
structure was constructed from 1962 to 1972.
It is 120 meters in height (above foundation)
and with a thickness of the crown cantilever
decreasing from 17,30 m at the base to 3 m at
the crest. It is provided with 5 galleries inside
its body [1]. Some pictures of Soria dam are
showninFig. 1.

Fig. 1: Soriaarch dam (Gran Canaria).

The present study aims at building a three-
dimensional numerical model for the analysis
of the dynamic and seismic behavior of the
Soria arch dam, that can later be used for
monitoring the structural health of this
infrastructure. In order to do so, the influence
of the soil-structure interaction effects, and of
the accuracy of the geometrical representation
of the surrounding topography, will need to
be assessed.

2 METHODOLOGY

Firstly, a geometricd model was
developed consisting of two parts. the dam
wall and the canyon. The geometry of the
dam wall was constructed according to the
information gathered from a specific study
made in 1991 [2]; on the other hand, a
geometrical representation of the actual
canyon and surroundings was obtained from
topographic information available in the
databases of Gobierno de Canarias|[3].
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Secondly, a modal analysis was carried
out. For that, a 3D finite element model of the
dam wall was developed to obtain the mode
shapes of vibration of the fixed-base model.
The finite element mesh corresponding to the
geometry of the dam wall was constructed by
means of 4250 tetrahedral 3D elements and
7805 nodes (Fig. 2). For the Finite Element
Anaysis, Code Aster was used, which is a

Finite Element Analysis software engine [4].
[ I

@ (b)

.

Fig. 2: 3D mesh used for the FEM analysis. (a)
downstream side view (b) upstream side view.

Thirdly, harmonic anayses of the system,
considering both fixed- and compliant-base
configurations, were carried out using the
multidomain Boundary Element Method code
in the frequency domain described in Maeso
et a. [5]. Wall and surrounding ground are
modelled as coupled  homogeneous
viscoelastic media. In this case, the Boundary
Element Method allows to take intrinsically
into account the unbounded character of the
soil medium, without the need of absorbing
boundaries or any other mathematical artifact.
On the contrary, the free-field mesh is
truncated at a distance such that only the
scattered wave fields are sufficiently damped.
Nine-node quadrilatera elements and six-
node triangular boundary elements are used to
mesh the boundaries.

Fig. 3 shows the boundary element mesh
used for the fixed-base model. At the same
time, the influence of soil-structure
interaction and of the accuracy of the
geometrical representation of the surrounding
topography on such soil-structure interaction
effects needs to be evauated. In order to do
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so, three of the BE discretizations are used.
Figures 4, 5 and 6 show the actual geometry
of the dam wall and different approximations
of the surrounding soil, from a straight
prismatic canyon with two different amounts
of free-surface (Fig. 4 and 5, for free-surface
extensions equal to two or three times the
height of the dam wall) to a model of the
actual topography (Fig. 6).

Fig. 6: BE model. Approximation of the actual
topography of the canyon. Extension of the free-field
discretization: 240 m

The node studied is approximately located
at the midpoint of the dam crest, so frecuency

Fig. 3: 3D mesh used for the BEM analysis of the response functions obtained by BE method in
dam wall. (a) downstream side view (b) upstream side this node will be plotted for 4 cases: Fixed-
view. base, and compliant-base with different

geometries (Fig 4, 5 and 6). On the one hand,
in the fixed-base anaysis, a unit harmonic
horizontal displacement along the upstream
direction was given at the abutment of the
dam; on the another hand, for the compliant
anaysis, the system is assumed to be
impinged by seismic time-harmonic plane
waves. For this analysis, it was assumed that
the incident wave field consists solely of
plane SH waves propagating verticaly with a
horizontal  upstream  free-field ground
Fig. 4: BE model, prismatic canyon. Extension of the surface motion (upstream). .
free-field discretization: 240 m The concrete dam wall and the foundation
rock material are assumed to be viscoelastic
with the properties shown in Table 1 [1, 6].

Property Dam concrete  Foundation rock
Shear modulus, G (MPa) 8167 12083
Mass density, p (kg/m°) 2300 2143
Poisson’s ratio, v 0,2 0,2
Internal damping ratio, & 0,01 0,01
Table 1: Materia properties
4 RESULTS

The first three symmetrical mode shapes of
Fig. 5: BE model, prismatic canyon. Extension of the vi brqtlon obtained with a modal a”a'YS‘S of
free-field discretization: 360 m the fixed-base FEM model, together with the
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modes infered from the harmonic analysis
with the fixed-base BEM model, are shown in
Figure 7. A very good agreement is observed
between the two sets of results, in terms of
both frequency and shape, which contributes
to validate the BE wall mesh used below in
the compliant-base analysis.

>

Frecuency 5 Hz

o

Frecuency 6,4 Hz

I

Frecuency 7,8 Hz
(b)

Fig. 7: Symmetrlcal mode shapes : (a) FEM ; (b) BEM.

The frequency response functions obtained
with the frequency domain anaysis of the
fixed-base and compliant-base models with
different geometries at the node studied are
plotted in Fig. 8.

Fixed base

___ Compliant base,
prismaticcanyon (R=240m)
Compliant base,
topographic canyon (R=240m)
Compliant base,

prismatic canyon (R=360m)

100 [

Frecuency (Hz)
Fig. 8: FRFs. Transversal response of the midpoint of
the dam crest.

5 CONCLUSIONS

The frequency-domain analyses carried out
show that the soil—structure interaction has
an important influence on the seismic
response of the dam wall (the vibration
frequencies on compliant base are 7% lower
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than in fixed base); nevertheless, the actual
topography of the canyon around the dam
wall seemsto have avery low influence.

After having estimated the most relevant
natural frequencies and modal shapes of the
structure, an experimental campaign will be
carried out in order to extract the empirica
dynamic properties of the system and perform
a model updating procedure on the numerical
model presented herein.
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