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MODELO NUMERICO PARA EL CALCULO DE IMPEDANCIAS DINAMICAS DE
PILOTES Y GRUPOS DE PILOTES

Luis A. Padroén, Juan J. Aznarez y Orlando Maeso

Instituto Universitario Sistemas Inteligentes y Aplicaciones Numéricas en Ingenieria
Universidad de Las Palmas de Gran Canaria
Edificio Central del Parque Cientifico y Tecnologico. Campus Universitario de Tafira.
35017-Las Palmas de Gran Canaria. Espana.
e-mail: lpadron@iusiani.ulpgc.es; jaznarez@iusiani.ulpgc.es; omaeso@iusiani.ulpge.es

RESUMEN

El analisis dindamico de cimentaciones pilotadas sujetas a cargas armonicas ha sido tratado por
numerosos autores durante las ultimas décadas. Una de las caracteristicas principales del
comportamiento dindmico del sistema es su matriz de rigidez dinamica, que relaciona las
solicitaciones aplicadas al encepado con los desplazamientos relativos resultantes.

En gran parte de estos trabajos se utiliza el Método de los Elementos de Contorno (MEC) para
modelar el suelo y Elementos Finitos (MEF) tipo barra, o formulaciones equivalentes, para modelar
los pilotes. Otra aproximaciéon mas rigurosa es la de utilizar el MEC tanto para el suelo como para los
pilotes, tal y como han hecho dos de los autores de este trabajo para suelos elasticos y poroelasticos. El
alto coste computacional es la mayor desventaja de esta alternativa.

En esta comunicacion se presenta un método acoplado MEF-MEC para el analisis dinamico en
régimen armonico de cimentaciones pilotadas en suelos elasticos. Los pilotes se modelan utilizando el
MEF como vigas de acuerdo a la hipétesis de Bernoulli, mientras el suelo es modelado usando el MEC
como un medio continuo, semi-infinito, isdtropo, lineal y viscoelastico. Los pilotes se consideran
como cargas aplicadas en el interior del suelo desde el punto de vista de la representacion integral del
mismo, no considerandose la discontinuidad del suelo debido a la presencia de la cimentacion.

Debido al reducido nimero de grados de libertad, la formulaciéon permite el analisis de encepados o
grupos de encepados con gran numero de pilotes. Otros aspectos importantes tales como la presencia
de discontinuidades geotécnicas o topograficas en el suelo pueden ser contemplados facilmente,
incluyendo suelos estratificados o el caso de pilotes hincados en base rocosa.

Con el objetivo de validar el modelo se presentan resultados de impedancias de encepados
cuadrados de 2x2, 4x4 y 5x5 pilotes en diversas configuraciones geométricas, incluyendo el caso de la
presencia de una base rocosa bajo la cimentacion. Los resultados obtenidos se han comparado con
otros presentes en la literatura, encontrando un acuerdo excelente. Se presentan y analizan también
distribuciones de cortante a lo largo de pilotes pertenecientes a un encepado cuadrado de 5x35.
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Palabras clave: Elementos de Contorno, Elementos Finitos, Interaccion pilote-suelo,
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Resumen. Se presenta un método acoplado MEF-MEC para el andlisis dindmico en
régimen armonico de cimentaciones pilotadas en suelos eldsticos. Los pilotes se modelan
utilizando el MEF como vigas de acuerdo a la hipotesis de Bernoulli, mientras el suelo es
modelado usando el MEC como un medio continuo, semi-infinito, isotropo, lineal y vis-
coeldstico. Distintos resultados de impedancias de grupos de pilotes con diversas configu-
raciones geométricas han sido obtenidos y comparados con otros presentes en la literatura,
encontrdndose un acuerdo excelente. Distribuciones de cortante en pilotes pertenecientes
a un encepado cuadrado de 5X5 también son representadas.
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1. INTRODUCCION

Los primeros modelos establecidos para el analisis del comportamiento dinamico de
cimentaciones pilotadas datan de los anos 70 del siglo pasado [1-4]. Desde entonces, este
tema ha sido objeto de numerosos trabajos en los que se aborda el problema desde distintos
planteamientos, parte de los cuales hace uso de formulaciones integrales en el contorno
en conjuncién con elementos finitos tipo viga para incluir la rigidez de los pilotes [5-16].
Un resumen de los trabajos realizados en este sentido entre los anos 1986 y 1996 puede
encontrarse en [17].

Ya durante los tltimos diez anos, algunos autores han utilizado una aproximacion mas
versatil y rigurosa, si bien computacionalmente més costosa, donde tanto el suelo como
los pilotes se modelan a través del Método de los Elementos de Contorno (MEC) [18-21].

Con el objetivo de disminuir el niimero de grados de libertad del modelo pero mantener
la versatilidad y el rigor en el andlisis dindmico en régimen arménico de cimentaciones
pilotadas en suelos eldsticos, se ha desarrollado un método acoplado MEF-MEC (pre-
viamente presentado en [22]) en el que los pilotes se modelan utilizando el Método de los
Elementos Finitos (MEF) como vigas de acuerdo a la hipdtesis de Bernoulli, mientras el
suelo es modelado usando el MEC como un medio continuo, semi-infinito, isétropo, lineal
y viscoeldstico. En esta aproximacion, y desarrollando una idea presentada en [23-25] para
el caso estdtico, no es necesario realizar una discretizacién en elementos de contorno de
la interfase pilote-suelo sino que, desde la representacion integral del suelo, los pilotes son
representados como unas cargas de volumen convenientemente acopladas con Elementos
Finitos monodimensionales.

En la primera parte del documento se describen las lineas generales de la formulacion
del modelo. A continuacion, a modo de validacion, se comparan resultados de impedancias
dindmicas de grupos de pilotes con otros presentes en la bibliografia. Posteriormente, se
analiza la distribucién del esfuerzo cortante a lo largo de los pilotes de un encepado. El
articulo termina con una serie de conclusiones respecto a la validez y las ventajas del
modelo presentado.

2. FORMULACION DEL MODELO DE INTERACCION PILOTE-SUELO

El comportamiento de un pilote sometido a carga armoénica, considerando amortigua-
miento interno nulo, puede ser descrito por la ecuacion

K up _ Femt + Q qp’ (]_)

donde K = K — w?M, K y M son las matrices de rigidez y masa del pilote, w es la
frecuencia de excitacion, u® es el vector de amplitudes de traslaciones y rotaciones nodales
a lo largo del pilote, F*** incluye las fuerzas en la cabeza Fy,, y la fuerza axial en la punta
del pilote F,, g” es el vector de tensiones a lo largo del fuste del pilote, y Q es la matriz
que transforma los componentes nodales de las tensiones en fuerzas nodales equivalentes.
Las matrices K, Q y M son obtenidas haciendo uso del principio de los desplazamientos
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virtuales, segin la metodologia usual.

Los pilotes son modelados haciendo uso del MEF como vigas verticales de Bernoulli, y
son discretizados usando el elemento de tres nodos mostrado en la figura 1, sobre el que hay
definidos 13 grados de libertad: dos desplazamientos laterales u; y uo, y un desplazamiento
vertical uz en cada nodo; y dos rotaciones ¢ en cada uno de los nodos extremos, una sobre
el eje x; y otra sobre el eje z,, siendo z3 el eje vertical.

s
_ m Q&=1 e%p—j—» u,,
u, e”"
3
I I 0&=0 /—> u,
u,
L u
2 4 ks
sz -

Figura 1: Representacién del Elemento Finito utilizado.

Por otro lado, el suelo es modelado haciendo uso del MEC como un medio lineal,
homogéneo, isétropo y viscoeldstico. La ecuacion integral de contorno para un estado
elastodinamico arménico definido en un dominio 2 con contorno I' puede ser escrita de
forma general como

ckuk+/p*udF:/u*de+/u*XdQ, (2)
r r Q

donde c* es la matriz de términos libres en el punto de colocacién ‘k’, X son las fuerzas
de volumen en el dominio {2, u y p son los vectores de desplazamientos y tensiones, y u*
y p* son los tensores de la solucién fundamental para una carga armoénica concentrada
aplicada en el punto ‘k’. Un modelo de amortiguamiento histerético es usado para el suelo
a través de un médulo de elasticidad transversal p complejo del tipo pu = Re[u](1 + 2i€),
siendo £ el coeficiente de amortiguamiento. Mas detalles sobre el MEC pueden encontrarse
en [26].

Generalmente, las fuerzas de volumen X son consideras nulas en la mayor parte de los
problemas elastodindmicos. Sin embargo, en este planteamiento, la interaccion suelo-pilote
tiene lugar, desde la perspectiva de la formulacién integral, a través de fuerzas internas
puntuales aplicadas en el lugar geométrico de la punta de cada pilote y de lineas de carga
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situadas a lo largo del eje de cada pilote. De este modo, no es necesario discretizar los
contornos de la interfase pilote-suelo con elementos de contorno, con el consecuente ahorro
en el niimero de grados de libertad. Estas lineas de carga q®* y su relacién con las tensiones
qP’ = —q%, se representan en la figura 2 junto a las fuerzas puntuales Fj,. en la punta de
los pilotes.

F/op,
R N r
D i |
—— qp, \\ q /
| —
r,

e . |

Pilotes Suelo

Figura 2: Representacién de las lineas de carga de dos pilotes embebidos en un semiespacio.

Ahora, la ecuacién (2) puede ser escrita como

ckuk+/p*udF:/u*de—|—Z
r r

donde I, es la interfase pilote-suelo del pilote j, n,, es el nimero total de pilotes y Ti es
un vector de tres componentes que introduce la contribucién de la fuerza puntual F},; en
la cabeza del pilote j-ésimo, cuando la carga testigo es aplicada sobre el punto ‘k’. Una
vez que el contorno I' ha sido discretizado y la ecuacién (3) ha sido aplicada sobre todos
los nodos, esta ecuacion puede ser escrita en forma matricial como

/ u'q® dly,, — YIF, |, (3)
r

Pj

H*u' — G*p— > G™q¥+)» TYEF, =0, (4)
=1 =

donde u® es el vector de desplazamientos nodales en la superficie, H*® y G*° son las
matrices obtenidas de la integracion sobre I' del producto de las funciones de forma de los
elementos de contorno por las soluciones fundamentales en tensiones y desplazamientos
respectivamente, y G*7 es la matriz obtenida de la integracién sobre I',, del producto de
la solucién fundamental en desplazamientos por las funciones de forma del pilote, cuando
la carga testigo esta aplicada sobre I'.

Ademéds, la ecuacion (3) serd también aplicada en los puntos internos definidos por los
nodos de cada pilote. Asi, para un pilote i, uno puede escribir
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Tp Tp
u) + H'u® — GPp — Y GPPigY + Y YPIF, =0, (5)
j=1 j=1

donde u}’ es el vector de desplazamientos del nodo k del pilote i donde la carga testigo
estd aplicada, H?** y GP** son las matrices obtenidas de la integracion sobre I' del producto
de las funciones de forma de los elementos de contorno por las soluciones fundamentales
en tensiones y desplazamientos respectivamente, y GP*7 es la matriz que se obtiene de
la integracion sobre I',; del producto de la soluciéon fundamental en desplazamientos por
las funciones de forma del elemento pilote, cuando la carga testigo esta aplicada sobre el
pilote 1.

Dado que se consideran fuerzas puntales actuando sobre la punta de los pilotes, la
ecuacién (5) debe ser escrita para la direccién zz haciendo uso de una estrategia de
colocacién no nodal en el elemento inferior de cada pilote. De esta forma, puede escribirse
una ecuacién extra en forma matricial como

D7 u} + HP*u® — GP*p Z GPPig® + Z TPIF, = (6)

donde u,’ es el vector de desplazamientos nodales del elemento inferior del pilote ¢, sobre
el que la carga testigo estd aplicada, y DT es la matriz de interpolacién para el valor de
desplazamiento en el punto de colocacion en funcién de los valores nodales del elemento.

Estableciendo condiciones de equilibrio y compatibilidad a lo largo de la interfase,
y asumiendo la tensiones q° como positivas, las ecuaciones (1), (4), (5) y (6) pueden
reagruparse como

H*® —G% —_Q% Y3 @ u
H” —-GP —GP? Y’ C p

S S q
H? -G -Gy Y, D' || ¢
o 0 qQ I K

»

=B, (7)

%

donde D’ es una matriz formada por los vectores D, C’ contiene los términos libres
correspondientes a la colocacién sobre los nodos internos de los pilotes, e I’ es una matriz
de ceros con términos unitarios en las posiciones correspondientes a las incognitas F). .

En este apartado se han presentado las ideas principales de este planteamiento. Una
exposicién mas pormenorizada de la formulaciéon puede encontrarse en Padrén et al. [22],
donde la formulacion es discutida para el caso de grupos de pilotes embebidos en un
semiespacio.
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3. RESULTADOS
3.1. Definicién del problema de impedancias

La matriz de impedancia dindmica [K;; de un pilote relaciona el vector de fuerzas (y mo-
mentos) aplicados en la cabeza de un pilote con el vector de desplazamientos (y rotaciones)
resultantes. La figura 3 ilustra la definicion del problema, donde L y d son la longitud y
diametro de los pilotes, s la distancia entre pilotes adyacentes y H la profundidad, en su
caso, del estrato.

Figura 3: Grupo de 2x2 pilotes embebido en un estrato. Definicién geométrica del problema.

Los términos de impedancia dindamica para una excitaciéon armoénica son funciones de
la frecuencia w, y son normalmente escritas como

Ki; = kij +ia,cij, (8)

donde k;; y ¢;; son los coeficientes de rigidez y amortiguamiento, respectivamente, depen-
dientes de la frecuencia, a, es la frecuencia adimensional

_

(9)

Qo
Cs

y ¢, es la velocidad de la onda de corte en el suelo.

La figura 4 muestra, a modo de esquema, una de las discretizaciones utilizadas para
modelar un grupo de 5x5 pilotes embebido en un semiespacio cuyo comportamiento
dindmico es estudiado en el apartado siguiente. Dado que el codigo desarrollado incorpora
propiedades de simetria, sélo una cuarta parte de la geometria debe ser discretizada.
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Discretizacién MEC
para el suelo

Discretizacién MEF
para los pilotes

Figura 4: Esquema de la discretizaciéon de un grupo de 5x5 pilotes.

3.2. Ca&lculo de impedancias. Resultados de Validacién

En esta seccion, varios conjuntos de resultados obtenidos del calculo de impedancias

de grupos de pilotes van a ser presentados y comparados con resultados de otros autores
para los mismos problemas.

12 . . . . . . . . . 10
/’\\
10 1 8l A
o N o N7 6
= £
wxﬁ ooﬁ 4
—— MEC-MEF
2r | === Kaynia \
- - --Nogami RN 7]
. . . ! . . . . . 0 . . . . . LN T
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
a a
(o) o)

Figura 5: Impedancia Vertical de un grupo de 2x2 pilotes embebido en un estrato sobre base rigida.
Comparacion con las soluciones de Kaynia y Nogami.

El primer caso de estudio corresponde al calculo de las curvas de impedancia vertical
de un grupo de 2x2 pilotes embebido en un estrato que descansa sobre una base rigida.
El problema fue presentado por Nogami [4] y fue utilizado también como resultado de
validacién por Kaynia [5]. La profundidad del estrato es H = 75d, la relacién de aspecto
de los pilotes es L/d = 37,5, la relacién entre separacién y didmetro de los pilotes es
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s/d =5, y las propiedades adimensionales de estrato (s) y pilotes (p) son: relacién entre
densidades ps/p, = 0,7, coeficientes de Poisson y de amortiguamiento interno v, = 0.4,
v, = 0,25 y Bs = 0,05 respectivamente, y %LI: = 1, siendo E, el mddulo de elasticidad,
A el area de la seccion del pilote y u el médulo de elasticidad transversal del suelo. Las
funciones de impedancia vertical (k% y ¢ ) del grupo de pilotes se presentan normalizadas
respecto al producto de la rigidez estética del respectivo pilote simple (k, ) por el niimero
de pilotes que componen el grupo (N). Estas funciones se dibujan frente a la frecuencia
adimensional definida en la ecuacién (9).

Como puede verse en la figura 5, el acuerdo con los resultados de referencia es muy
bueno, particularmente con el presentado por Kaynia. Notese que la frecuencia fundamen-
tal del estrato a compresion-extension, situada aproximadamente en a, = 0,05, aparece

en las soluciones de Nogami y en la descrita en este articulo.
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Figura 6: Impedancias horizontales y de cabeceo de un grupo de 4x4 pilotes. Comparacién con la soluciéon
de Kaynia.

El segundo caso corresponde al calculo de las impedancias horizontales y de cabeceo
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de un grupo de 4x4 pilotes embebido en un semiespacio, y fue presentado en Kaynia [5].
Los pardmetros que caracterizan el problema son: relacién de aspecto de los pilotes L/d =
15, relaciones entre separacion y didmetro de los pilotes s/d = 2,5 y 10, relacién entre
densidades ps/p, = 0,7, coeficientes de Poisson y de amortiguamiento interno v, = 0.4,
v, = 0,25 y Bs = 0,05 respectivamente, y E,/FE; = 103, siendo E, y Es los médulos de
elasticidad de pilote y suelo respectivamente. Las funciones de impedancia horizontal (k&
y &) del grupo de pilotes se presentan normalizadas respecto al producto de la rigidez
estatica del pilote simple respectivo (kj, ) por el nimero de pilotes que componen el
grupo (V). Las impedancias de cabeceo han sido normalizadas respecto a la suma de los
productos del cuadrado de la distancia de cada pilote al eje de rotacién (x;) por la rigidez
estatica vertical del pilote simple respectivo (kZ, ). Estas funciones se dibujan frente a
la frecuencia adimensional definida en la ecuacién (9). Los resultados se muestran en la
figura 6, donde puede comprobarse que el acuerdo entre las soluciones es excelente.
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Figura 7: Impedancias de horizontales y de cabeceo de un grupo de 5x5 pilotes. Comparacién con la
solucién de Kaynia.
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El tercer y tltimo caso corresponde al célculo de la impedancias horizontales y de
cabeceo de un grupo de 5x5 pilotes embebido en un semiespacio. Los parametros que
caracterizan el problema son: relacién de aspecto de los pilotes L/d = 20, relaciones entre
separacion y diametro de los pilotes s/d = 3 y 6, relacién entre densidades p,/ps =
1,4, coeficientes de Poisson y de amortiguamiento interno vy = 04, v, = 0,25y 8, =
0,05 respectivamente, y E,/E, = 10> y 103. Las funciones de impedancia se presentan
adimensionalizadas como en el caso anterior. Los resultados se muestran en la figura 7
en comparacion con los presentados por Kaynia & Mahzooni [16]. Aunque estos autores
solo estudian las impedancias hasta la frecuencia adimensional a, = 0,5, los resultados se
presentan hasta a, = 1,0. Puede verse de nuevo un excelente acuerdo entre los resultados.

3.3. Anadlisis de la distribucién de cortante a lo largo de los pilotes

Por dltimo, se realiza un andlisis de la distribucién del esfuerzo cortante a lo largo
de algunos de los pilotes del ultimo de los casos presentados en el apartado anterior,
cuando el encepado es sometido a un desplazamiento horizontal unitario. Por razones
de espacio, solo se presentan las distribuciones correspondientes a los cuatro pilotes mas
representativos, tal y como se especifica en el esquema que aparece junta a las gréaficas.
En las figuras 8 y 9 se presentan resultados para s/d = 3, y en las figuras 10 y 11 para
s/d = 6, correspondiendo, en ambos casos, la primera a E,/FE, = 10° y la segunda a
E,/E, = 10%. Las curvas se presentan en términos de profundidad adimensional z/L
(estando la superficie libre en z/L = 0) frente al valor del cortante en cada punto (parte
real a la izquierda y médulo a la derecha) normalizado respecto a la impedancia horizontal
del respectivo pilote simple (k,.,). Ademds, en todos los casos se presentan los resultados
correspondientes a tres frecuencias distintas: a, = 0,1,0,4 y 0,8, en la primera, segunda y
tercera fila respectivamente.

En estos resultados pueden observarse diversos fenomenos que son enumerados a con-
tinuacién, si bien parte de ellos son ampliamente conocidos:

s FEn el caso cuasi-estatico:

e La distribucion del esfuerzo cortante se comporta aproximadamente de forma
exponencial, siendo tnicamente la parte superior de los pilotes la que soporta
carga horizontal.

e La ‘longitud activa’ de los pilotes es menor para la relacién E,/E, = 10%, caso
correspondiente a un suelo mas duro en relacién con el pilote.

e El pilote interior a es el que menos carga soporta, mientras el pilote exterior d
es el que soporta mayor carga.

» Para frecuencias intermedias y altas:

e El valor del esfuerzo cortante para un instante determinado oscila en torno a
cero, con una longitud de onda que disminuye al aumentar la frecuencia.

10
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Figura 8: Distribucién del esfuerzo cortante en cuatro pilotes de un encepado cuadrado de 5x5 para
s/d=3y E,/Es =103,
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Figura 10: Distribucién del esfuerzo cortante en cuatro pilotes de un encepado cuadrado de 5x5 para
s/d=6y E,/Es = 103.
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El valor absoluto del esfuerzo cortante es maximo en la cabeza de los pilotes,
si bien su valor en la mitad inferior del pilote puede ser, en un instante deter-
minado, del orden del que aparece en la cabeza.

Toda la longitud del pilote esta sometida a esfuerzo cortante y no solamente
la ‘longitud activa’ del caso estatico.

La distribucién de carga entre los pilotes es dependiente de la frecuencia, con
lo que el pilote interior no es siempre el que menos carga soporta.

4. CONCLUSIONES

= Se ha presentado un modelo acoplado de Elementos Finitos y Elementos de Contorno
para el andlisis dinamico de pilotes y grupos de pilotes en suelos eldsticos.

= El cdlculo de impedancias dindmicas a través de este modelo ha sido validado me-
diante la comparacion de resultados con curvas presentes en la bibliografia especia-
lizada.

= El modelo no estd limitado al calculo de impedancias, sino que puede ser utilizado
para abordar un gran numero de problemas relacionados con el comportamiento
dindmico de cimentaciones pilotadas. Del mismo modo, pueden obtenerse multiples
variables, como deformaciones de pilote y suelo o diagramas de esfuerzos. Para
ilustrar este ultimo punto, se han presentado resultados de distribuciones de cortante
a lo largo de varios pilotes.

= El modelo presenta un gran ntimero de ventajas:

Gran versatilidad y rigor.

Disminucién considerable del nimero de grados de libertad respecto de una
formulacién en la que los pilotes también se modelen con Elementos de Con-
torno.

Posibilidad de analizar cimentaciones pilotadas embebidas, no sélo en un semies-
pacio o en un estrato sobre una base rigida, sino también en suelos estratifica-
dos, incluyendo depdsitos e inclusiones, y pudiendo estar las interfases atrave-
sadas por los pilotes.

No queda restringido al andlisis de superficies libres e interfases planas, sino
que éstas pueden representar cualquier topografia.

La discretizacion de los medios se realiza independientemente de la de los pi-
lotes, de tal forma que la configuracién de la cimentacién pilotada (ntmero,
posicién y caracteristicas geométricas de los pilotes) puede ser modificada sin
variar la discretizacion de los medios.
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