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Resumen. Se presenta un método acoplado MEF-MEC para el análisis dinámico en

régimen armónico de cimentaciones pilotadas en suelos elásticos. Los pilotes se modelan

utilizando el MEF como vigas de acuerdo a la hipótesis de Bernoulli, mientras el suelo es

modelado usando el MEC como un medio continuo, semi-infinito, isótropo, lineal y vis-

coelástico. Distintos resultados de impedancias de grupos de pilotes con diversas configu-

raciones geométricas han sido obtenidos y comparados con otros presentes en la literatura,

encontrándose un acuerdo excelente. Distribuciones de cortante en pilotes pertenecientes

a un encepado cuadrado de 5×5 también son representadas.
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1. INTRODUCCIÓN

Los primeros modelos establecidos para el análisis del comportamiento dinámico de
cimentaciones pilotadas datan de los años 70 del siglo pasado [1-4]. Desde entonces, este
tema ha sido objeto de numerosos trabajos en los que se aborda el problema desde distintos
planteamientos, parte de los cuales hace uso de formulaciones integrales en el contorno
en conjunción con elementos finitos tipo viga para incluir la rigidez de los pilotes [5-16].
Un resumen de los trabajos realizados en este sentido entre los años 1986 y 1996 puede
encontrarse en [17].

Ya durante los últimos diez años, algunos autores han utilizado una aproximación más
versátil y rigurosa, si bien computacionalmente más costosa, donde tanto el suelo como
los pilotes se modelan a través del Método de los Elementos de Contorno (MEC) [18-21].

Con el objetivo de disminuir el número de grados de libertad del modelo pero mantener
la versatilidad y el rigor en el análisis dinámico en régimen armónico de cimentaciones
pilotadas en suelos elásticos, se ha desarrollado un método acoplado MEF-MEC (pre-
viamente presentado en [22]) en el que los pilotes se modelan utilizando el Método de los
Elementos Finitos (MEF) como vigas de acuerdo a la hipótesis de Bernoulli, mientras el
suelo es modelado usando el MEC como un medio continuo, semi-infinito, isótropo, lineal
y viscoelástico. En esta aproximación, y desarrollando una idea presentada en [23-25] para
el caso estático, no es necesario realizar una discretización en elementos de contorno de
la interfase pilote-suelo sino que, desde la representación integral del suelo, los pilotes son
representados como unas cargas de volumen convenientemente acopladas con Elementos
Finitos monodimensionales.

En la primera parte del documento se describen las ĺıneas generales de la formulación
del modelo. A continuación, a modo de validación, se comparan resultados de impedancias
dinámicas de grupos de pilotes con otros presentes en la bibliograf́ıa. Posteriormente, se
analiza la distribución del esfuerzo cortante a lo largo de los pilotes de un encepado. El
art́ıculo termina con una serie de conclusiones respecto a la validez y las ventajas del
modelo presentado.

2. FORMULACIÓN DEL MODELO DE INTERACCIÓN PILOTE-SUELO

El comportamiento de un pilote sometido a carga armónica, considerando amortigua-
miento interno nulo, puede ser descrito por la ecuación

K̄ u
p

= Fext + Qqp, (1)

donde K̄ = K − ω2M, K y M son las matrices de rigidez y masa del pilote, ω es la
frecuencia de excitación, up es el vector de amplitudes de traslaciones y rotaciones nodales
a lo largo del pilote, Fext incluye las fuerzas en la cabeza Ftop y la fuerza axial en la punta
del pilote Fp, qp es el vector de tensiones a lo largo del fuste del pilote, y Q es la matriz
que transforma los componentes nodales de las tensiones en fuerzas nodales equivalentes.
Las matrices K, Q y M son obtenidas haciendo uso del principio de los desplazamientos
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virtuales, según la metodoloǵıa usual.
Los pilotes son modelados haciendo uso del MEF como vigas verticales de Bernoulli, y

son discretizados usando el elemento de tres nodos mostrado en la figura 1, sobre el que hay
definidos 13 grados de libertad: dos desplazamientos laterales u1 y u2, y un desplazamiento
vertical u3 en cada nodo; y dos rotaciones θ en cada uno de los nodos extremos, una sobre
el eje x1 y otra sobre el eje x2, siendo x3 el eje vertical.

Figura 1: Representación del Elemento Finito utilizado.

Por otro lado, el suelo es modelado haciendo uso del MEC como un medio lineal,
homogéneo, isótropo y viscoelástico. La ecuación integral de contorno para un estado
elastodinámico armónico definido en un dominio Ω con contorno Γ puede ser escrita de
forma general como

ckuk +

∫

Γ

p∗u dΓ =

∫

Γ

u∗p dΓ +

∫

Ω

u∗X dΩ, (2)

donde ck es la matriz de términos libres en el punto de colocación ‘k ’, X son las fuerzas
de volumen en el dominio Ω, u y p son los vectores de desplazamientos y tensiones, y u∗

y p∗ son los tensores de la solución fundamental para una carga armónica concentrada
aplicada en el punto ‘k ’. Un modelo de amortiguamiento histerético es usado para el suelo
a través de un módulo de elasticidad transversal µ complejo del tipo µ = Re[µ](1 + 2iξ),
siendo ξ el coeficiente de amortiguamiento. Más detalles sobre el MEC pueden encontrarse
en [26].

Generalmente, las fuerzas de volumen X son consideras nulas en la mayor parte de los
problemas elastodinámicos. Sin embargo, en este planteamiento, la interacción suelo-pilote
tiene lugar, desde la perspectiva de la formulación integral, a través de fuerzas internas
puntuales aplicadas en el lugar geométrico de la punta de cada pilote y de ĺıneas de carga
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situadas a lo largo del eje de cada pilote. De este modo, no es necesario discretizar los
contornos de la interfase pilote-suelo con elementos de contorno, con el consecuente ahorro
en el número de grados de libertad. Estas ĺıneas de carga qsj y su relación con las tensiones
qpj = −qsj , se representan en la figura 2 junto a las fuerzas puntuales Fpj

en la punta de
los pilotes.

Figura 2: Representación de las ĺıneas de carga de dos pilotes embebidos en un semiespacio.

Ahora, la ecuación (2) puede ser escrita como

ckuk +

∫

Γ

p∗u dΓ =

∫

Γ

u∗p dΓ +

np
∑

j=1

[

∫

Γpj

u∗qsj dΓpj
− Υ

j
kFpj

]

, (3)

donde Γpj
es la interfase pilote-suelo del pilote j, np es el número total de pilotes y Υ

j
k es

un vector de tres componentes que introduce la contribución de la fuerza puntual Fpj
en

la cabeza del pilote j-ésimo, cuando la carga testigo es aplicada sobre el punto ‘k ’. Una
vez que el contorno Γ ha sido discretizado y la ecuación (3) ha sido aplicada sobre todos
los nodos, esta ecuación puede ser escrita en forma matricial como

Hssus
− Gssp −

np
∑

j=1

Gspjqsj +

np
∑

j=1

ΥsjFpj
= 0, (4)

donde us es el vector de desplazamientos nodales en la superficie, Hss y Gss son las
matrices obtenidas de la integración sobre Γ del producto de las funciones de forma de los
elementos de contorno por las soluciones fundamentales en tensiones y desplazamientos
respectivamente, y Gspj es la matriz obtenida de la integración sobre Γpj

del producto de
la solución fundamental en desplazamientos por las funciones de forma del pilote, cuando
la carga testigo está aplicada sobre Γ.

Además, la ecuación (3) será también aplicada en los puntos internos definidos por los
nodos de cada pilote. Aśı, para un pilote i, uno puede escribir
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u
pi

k + Hpisus
− Gpisp −

np
∑

j=1

Gpipjqsj +

np
∑

j=1

ΥpijFpj
= 0, (5)

donde u
pi

k es el vector de desplazamientos del nodo k del pilote i donde la carga testigo
está aplicada, Hpis y Gpis son las matrices obtenidas de la integración sobre Γ del producto
de las funciones de forma de los elementos de contorno por las soluciones fundamentales
en tensiones y desplazamientos respectivamente, y Gpipj es la matriz que se obtiene de
la integración sobre Γpj

del producto de la solución fundamental en desplazamientos por
las funciones de forma del elemento pilote, cuando la carga testigo está aplicada sobre el
pilote i.

Dado que se consideran fuerzas puntales actuando sobre la punta de los pilotes, la
ecuación (5) debe ser escrita para la dirección x3 haciendo uso de una estrategia de
colocación no nodal en el elemento inferior de cada pilote. De esta forma, puede escribirse
una ecuación extra en forma matricial como

DT u
pi

b + Hpis
e us

− Gpis
e p −

np
∑

j=1

Gpipj

e qsj +

np
∑

j=1

Υpij
b3

Fpj
= 0, (6)

donde u
pi

b es el vector de desplazamientos nodales del elemento inferior del pilote i, sobre
el que la carga testigo está aplicada, y DT es la matriz de interpolación para el valor de
desplazamiento en el punto de colocación en función de los valores nodales del elemento.

Estableciendo condiciones de equilibrio y compatibilidad a lo largo de la interfase,
y asumiendo la tensiones qs como positivas, las ecuaciones (1), (4), (5) y (6) pueden
reagruparse como









Hss
−Gss

−Gsp Υs Ø
Hps

−Gps
−Gpp Υp C′

Hps
e −Gps

e −Gpp
e Υ

p
b3

D′

Ø Ø Q I′ K̄































us

p

qs

Fp

up























= B, (7)

donde D′ es una matriz formada por los vectores D, C′ contiene los términos libres
correspondientes a la colocación sobre los nodos internos de los pilotes, e I′ es una matriz
de ceros con términos unitarios en las posiciones correspondientes a las incógnitas Fpj

.
En este apartado se han presentado las ideas principales de este planteamiento. Una

exposición más pormenorizada de la formulación puede encontrarse en Padrón et al. [22],
donde la formulación es discutida para el caso de grupos de pilotes embebidos en un
semiespacio.
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3. RESULTADOS

3.1. Definición del problema de impedancias

La matriz de impedancia dinámica Kij de un pilote relaciona el vector de fuerzas (y mo-
mentos) aplicados en la cabeza de un pilote con el vector de desplazamientos (y rotaciones)
resultantes. La figura 3 ilustra la definición del problema, donde L y d son la longitud y
diámetro de los pilotes, s la distancia entre pilotes adyacentes y H la profundidad, en su
caso, del estrato.

Figura 3: Grupo de 2×2 pilotes embebido en un estrato. Definición geométrica del problema.

Los términos de impedancia dinámica para una excitación armónica son funciones de
la frecuencia ω, y son normalmente escritas como

Kij = kij + iaocij, (8)

donde kij y cij son los coeficientes de rigidez y amortiguamiento, respectivamente, depen-
dientes de la frecuencia, ao es la frecuencia adimensional

ao =
ωd

cs

(9)

y cs es la velocidad de la onda de corte en el suelo.
La figura 4 muestra, a modo de esquema, una de las discretizaciones utilizadas para

modelar un grupo de 5×5 pilotes embebido en un semiespacio cuyo comportamiento
dinámico es estudiado en el apartado siguiente. Dado que el código desarrollado incorpora
propiedades de simetŕıa, sólo una cuarta parte de la geometŕıa debe ser discretizada.
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Discretización MEC
para el suelo

Discretización MEF
para los pilotes

Figura 4: Esquema de la discretización de un grupo de 5×5 pilotes.

3.2. Cálculo de impedancias. Resultados de Validación

En esta sección, varios conjuntos de resultados obtenidos del cálculo de impedancias
de grupos de pilotes van a ser presentados y comparados con resultados de otros autores
para los mismos problemas.
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Figura 5: Impedancia Vertical de un grupo de 2×2 pilotes embebido en un estrato sobre base ŕıgida.
Comparación con las soluciones de Kaynia y Nogami.

El primer caso de estudio corresponde al cálculo de las curvas de impedancia vertical
de un grupo de 2×2 pilotes embebido en un estrato que descansa sobre una base ŕıgida.
El problema fue presentado por Nogami [4] y fue utilizado también como resultado de
validación por Kaynia [5]. La profundidad del estrato es H = 75d, la relación de aspecto
de los pilotes es L/d = 37,5, la relación entre separación y diámetro de los pilotes es
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s/d = 5, y las propiedades adimensionales de estrato (s) y pilotes (p) son: relación entre
densidades ρs/ρp = 0,7, coeficientes de Poisson y de amortiguamiento interno νs = 0,4,

νp = 0,25 y βs = 0,05 respectivamente, y πµL2

EpA
= 1, siendo Ep el módulo de elasticidad,

A el area de la sección del pilote y µ el módulo de elasticidad transversal del suelo. Las
funciones de impedancia vertical (kG

zz y cG
zz) del grupo de pilotes se presentan normalizadas

respecto al producto de la rigidez estática del respectivo pilote simple (ks
zzo

) por el número
de pilotes que componen el grupo (N). Estas funciones se dibujan frente a la frecuencia
adimensional definida en la ecuación (9).

Como puede verse en la figura 5, el acuerdo con los resultados de referencia es muy
bueno, particularmente con el presentado por Kaynia. Nótese que la frecuencia fundamen-
tal del estrato a compresión-extensión, situada aproximadamente en ao = 0,05, aparece
en las soluciones de Nogami y en la descrita en este art́ıculo.
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Figura 6: Impedancias horizontales y de cabeceo de un grupo de 4×4 pilotes. Comparación con la solución
de Kaynia.

El segundo caso corresponde al cálculo de las impedancias horizontales y de cabeceo
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de un grupo de 4×4 pilotes embebido en un semiespacio, y fue presentado en Kaynia [5].
Los parámetros que caracterizan el problema son: relación de aspecto de los pilotes L/d =
15, relaciones entre separación y diámetro de los pilotes s/d = 2, 5 y 10, relación entre
densidades ρs/ρp = 0,7, coeficientes de Poisson y de amortiguamiento interno νs = 0,4,
νp = 0,25 y βs = 0,05 respectivamente, y Ep/Es = 103, siendo Ep y Es los módulos de
elasticidad de pilote y suelo respectivamente. Las funciones de impedancia horizontal (kG

xx

y cG
xx) del grupo de pilotes se presentan normalizadas respecto al producto de la rigidez

estática del pilote simple respectivo (ks
xxo

) por el número de pilotes que componen el
grupo (N). Las impedancias de cabeceo han sido normalizadas respecto a la suma de los
productos del cuadrado de la distancia de cada pilote al eje de rotación (xi) por la rigidez
estática vertical del pilote simple respectivo (ks

zzo
). Estas funciones se dibujan frente a

la frecuencia adimensional definida en la ecuación (9). Los resultados se muestran en la
figura 6, donde puede comprobarse que el acuerdo entre las soluciones es excelente.
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Figura 7: Impedancias de horizontales y de cabeceo de un grupo de 5×5 pilotes. Comparación con la
solución de Kaynia.
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El tercer y último caso corresponde al cálculo de la impedancias horizontales y de
cabeceo de un grupo de 5×5 pilotes embebido en un semiespacio. Los parámetros que
caracterizan el problema son: relación de aspecto de los pilotes L/d = 20, relaciones entre
separación y diámetro de los pilotes s/d = 3 y 6, relación entre densidades ρp/ρs =
1,4, coeficientes de Poisson y de amortiguamiento interno νs = 0,4, νp = 0,25 y βs =
0,05 respectivamente, y Ep/Es = 102 y 103. Las funciones de impedancia se presentan
adimensionalizadas como en el caso anterior. Los resultados se muestran en la figura 7
en comparación con los presentados por Kaynia & Mahzooni [16]. Aunque estos autores
sólo estudian las impedancias hasta la frecuencia adimensional ao = 0,5, los resultados se
presentan hasta ao = 1,0. Puede verse de nuevo un excelente acuerdo entre los resultados.

3.3. Análisis de la distribución de cortante a lo largo de los pilotes

Por último, se realiza un análisis de la distribución del esfuerzo cortante a lo largo
de algunos de los pilotes del último de los casos presentados en el apartado anterior,
cuando el encepado es sometido a un desplazamiento horizontal unitario. Por razones
de espacio, sólo se presentan las distribuciones correspondientes a los cuatro pilotes más
representativos, tal y como se especifica en el esquema que aparece junta a las gráficas.
En las figuras 8 y 9 se presentan resultados para s/d = 3, y en las figuras 10 y 11 para
s/d = 6, correspondiendo, en ambos casos, la primera a Ep/Es = 103 y la segunda a
Ep/Es = 102. Las curvas se presentan en términos de profundidad adimensional z/L
(estando la superficie libre en z/L = 0) frente al valor del cortante en cada punto (parte
real a la izquierda y módulo a la derecha) normalizado respecto a la impedancia horizontal
del respectivo pilote simple (kxxo

). Además, en todos los casos se presentan los resultados
correspondientes a tres frecuencias distintas: ao = 0,1, 0,4 y 0,8, en la primera, segunda y
tercera fila respectivamente.

En estos resultados pueden observarse diversos fenómenos que son enumerados a con-
tinuación, si bien parte de ellos son ampliamente conocidos:

En el caso cuasi-estático:

• La distribución del esfuerzo cortante se comporta aproximadamente de forma
exponencial, siendo únicamente la parte superior de los pilotes la que soporta
carga horizontal.

• La ‘longitud activa’ de los pilotes es menor para la relación Ep/Es = 102, caso
correspondiente a un suelo más duro en relación con el pilote.

• El pilote interior a es el que menos carga soporta, mientras el pilote exterior d

es el que soporta mayor carga.

Para frecuencias intermedias y altas:

• El valor del esfuerzo cortante para un instante determinado oscila en torno a
cero, con una longitud de onda que disminuye al aumentar la frecuencia.
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Figura 8: Distribución del esfuerzo cortante en cuatro pilotes de un encepado cuadrado de 5×5 para
s/d = 3 y Ep/Es = 103.
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0 0.02 0.04 0.06 0.08

−1

−0.8

−0.6

−0.4

−0.2

0

Real(V
x
)/k

xx
o

z/
L

 

 

a
b
c
d

0 0.02 0.04 0.06 0.08

−1

−0.8

−0.6

−0.4

−0.2

0

Abs(V
x
)/k

xx
o

z/
L

 

 

a
b
c
d

−0.05 0 0.05 0.1 0.15

−1

−0.8

−0.6

−0.4

−0.2

0

Real(V
x
)/k

xx
o

z/
L

 

 

a
b
c
d

0 0.05 0.1 0.15 0.2

−1

−0.8

−0.6

−0.4

−0.2

0

Abs(V
x
)/k

xx
o

z/
L

 

 

a
b
c
d

−0.15 −0.1 −0.05 0 0.05 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

Real(V
x
)/k

xx
o

z/
L

 

 

a
b
c
d

0 0.1 0.2 0.3 0.4

−1

−0.8

−0.6

−0.4

−0.2

0

Abs(V
x
)/k

xx
o

z/
L

 

 

a
b
c
d

ao = 0,1

ao = 0,4

ao = 0,8

Figura 9: Distribución del esfuerzo cortante en cuatro pilotes de un encepado cuadrado de 5×5 para
s/d = 3 y Ep/Es = 102.
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Figura 10: Distribución del esfuerzo cortante en cuatro pilotes de un encepado cuadrado de 5×5 para
s/d = 6 y Ep/Es = 103.
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Figura 11: Distribución del esfuerzo cortante en cuatro pilotes de un encepado cuadrado de 5×5 para
s/d = 6 y Ep/Es = 102.

14



Luis A. Padrón, Juan J. Aznárez y Orlando Maeso

• El valor absoluto del esfuerzo cortante es máximo en la cabeza de los pilotes,
si bien su valor en la mitad inferior del pilote puede ser, en un instante deter-
minado, del orden del que aparece en la cabeza.

• Toda la longitud del pilote está sometida a esfuerzo cortante y no solamente
la ‘longitud activa’ del caso estático.

• La distribución de carga entre los pilotes es dependiente de la frecuencia, con
lo que el pilote interior no es siempre el que menos carga soporta.

4. CONCLUSIONES

Se ha presentado un modelo acoplado de Elementos Finitos y Elementos de Contorno
para el análisis dinámico de pilotes y grupos de pilotes en suelos elásticos.

El cálculo de impedancias dinámicas a través de este modelo ha sido validado me-
diante la comparación de resultados con curvas presentes en la bibliograf́ıa especia-
lizada.

El modelo no está limitado al cálculo de impedancias, sino que puede ser utilizado
para abordar un gran número de problemas relacionados con el comportamiento
dinámico de cimentaciones pilotadas. Del mismo modo, pueden obtenerse múltiples
variables, como deformaciones de pilote y suelo o diagramas de esfuerzos. Para
ilustrar este último punto, se han presentado resultados de distribuciones de cortante
a lo largo de varios pilotes.

El modelo presenta un gran número de ventajas:

• Gran versatilidad y rigor.

• Disminución considerable del número de grados de libertad respecto de una
formulación en la que los pilotes también se modelen con Elementos de Con-
torno.

• Posibilidad de analizar cimentaciones pilotadas embebidas, no sólo en un semies-
pacio o en un estrato sobre una base ŕıgida, sino también en suelos estratifica-
dos, incluyendo depósitos e inclusiones, y pudiendo estar las interfases atrave-
sadas por los pilotes.

• No queda restringido al análisis de superficies libres e interfases planas, sino
que éstas pueden representar cualquier topograf́ıa.

• La discretización de los medios se realiza independientemente de la de los pi-
lotes, de tal forma que la configuración de la cimentación pilotada (número,
posición y caracteŕısticas geométricas de los pilotes) puede ser modificada sin
variar la discretización de los medios.
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