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ABSTRACT

Offshore wind energy is playing an important role in the future mix of renewable sources
for electrical power production. Although floating technology is taking off in a powerful
way, more mature fixed wind turbines are still strongly growing in number and capabilities
[1]. For challenging soft soils, suction caissons are often considered for geotechnical and
ease of installation/removal reasons. In this contribution, the vertical dynamic interaction
of a tetrapod arrangement of suctions caissons is studied through an specially tailored
boundary element - shell finite element coupled model. The model is an evolution of
a previous one [2], where the boundary element hypersingular formulation required to
deal with the shell coupling is no longer needed, and an already available multilayered
viscoelastic half-space Green’s function [3] can be hence used. The discretization is thus
reduced to only the suction caisson skirt and lid. The dynamic interaction is observed
from the point of view of stiffnesses. The influence of the foundation spacing and soil
properties on the resulting impedance matrix is studied. As expected, the most relevant
factor on the dynamic interaction is the spacing. Impedance curves contain local minima
and maxima at frequencies corresponding to wavelength fractions of the spacing.
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OWT environment and design

wind turbine

Figure: Challenging environment and design. Image source: D. Schroeder
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Fundamental frequency challenge
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Vertical interaction

Exploiting the one-quarter symmetry:
» Plane zx: symmetry or antisymmetry
» Plane yz: symmetry or antisymmetry
Superposition of ss, sa, as (=sa) and aa:

1

Kll — Z (Kss I 2Ksa + Kaa)
1

K12 — Z (Kss - Kaa)
1

K13 — Z (Kss - 2Ksa + Kaa)
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Vertical interaction

u, F
|
| As s — o0:
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K12 — 0
K13 — 0

where Kigolated 1S the impedance of an
isolated foundation.
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BEM-FEM numerical approach (overview)
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BEM-FEM numerical approach (overview)

d

Shell FE

» Skirts: Shell Finite Elements.
» Shell degenerated from solid - MITC9?
» Soil: Boundary Element Method.
» Green's function for horizontally layered half-space?

'Bucalem & Bathe. Higher-order MITC general shell elements. Int J Num Meth Eng, 36, 1993.

2Pak & Guzina. Three-dimensional Green's functions for a multilayered half-space in displacement potentials. J
Eng Mech, 128, 2002.
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BEM-FEM numerical approach (some details)
Displacement Boundary Integral Equation:
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BEM-FEM numerical approach (some details)
Displacement Boundary Integral Equation:
cleul +][ thu Al = / Ut dl + / uj by dM = Hu = Gt + G,b
Mia Mia Mkirt
Shell finite element equilibrium equation (element level):
Queire : K®al®) — Q&) = g(®

Perfect contact: compatibility uss = ugkirt and equilibrium b + f = 0.
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Horizontally Layered Half-space Green'’s function

» Regularization of the integral:
F ti dr = [ (e = (G e AT (G e 2
lMia Mia Mia

where (tj )y rinann, are tractions of the homogeneous half-space
GF in statics.
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» Regularization of the integral:
F ti dr = [ (e = (G e AT (G e 2
Mia Mia Mia

where (tj )y rinann, are tractions of the homogeneous half-space
GF in statics.

» Overall computational cost — a trade-off between:

» DOF reduction: smaller LSE
» HLGF cost >> fundamental solution cost: costly LSE

» Develop strategies to reduce the number of HLGF evaluations.
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Horizontally Layered Half-space Green'’s function

a Build a database of HLGF evaluations (uj,, o7,;) based on:

» Axial symmetry: database indexed by (zs, 2o, r)

b Mesh regularity
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BEM-FEM model

Quadratic 9-node elements

Figure: Example mesh: L/D =2, s/D =4

17/32



BEM-FEM model: lid

Quadratic 9-node boundary elements

Figure: Example mesh: L/D =2, s/D =4

BC:

u=(0,0,1)

When solved:

K id) — / t, dr
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BEM-FEM model: skirt

Quadratic 9-node shell finite elements (MITC9)

BC (top nodes):
g Uy 0
uy, 0]
uy . 1
0y - 0]
0, 0
0, 0]
When solved:
K(skirt) _ Z FZ(I)

top nodes

Figure: Example mesh: L/D =2, s/D =4
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BEM-FEM model: soil-skirt interface

Quadratic 9-node BEM body load surface elements

Perfect contact
conditions:

Uss = Ugkirt

bss + fskirt =0

Figure: Example mesh: L/D =2, s/D =4
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Cases: geometry

t
» Skirt thickness to diameter ratio: ) = 0.02

L
» Depth to diameter ratios: D= {1,2,4}

» Spacing to diameter ratios: % ={2,4,8}
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Cases: material properties
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Cases: material properties

Go=G(0)
steel 525000 kg/m? G(2)
v=0.48
§=5% m>0
z
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Cases: frequencies

» Dimensionless frequency: ay = =
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Cases: frequencies
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Cases: frequencies
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Kss vs L/D vs s/D, J = 100, homogeneous soil
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Kss vs L/D vs s/D, J = 100, homogeneous soil
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Kss vs L/D vs s/D, J = 100, homogeneous soil
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Ks vs s/D vs m, J =100, L/D =2
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Ks vs s/D vs m, J =100, L/D =2
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Ks vs s/D vs m, J =100, L/D =2
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Kaa Vs Ksa vs Kss, s/D =8, L/D =1, homog.
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Vertical interaction (K11, Ko, Ki3)

F1 Kii K2 Kiz Ko uy
F2 _ Kii K2 Kis U>
F3 __ K1 Kiz u3
F4 sym. K11 Uy

Superposition of ss, sa, as (=sa) and aa:

1

Kll — Z (Kss + 2Ksa + Kaa)
1

K12 — Z (Kss - Kaa)
1

K13 — Z (Kss - 2Ksa + Kaa)
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Kllv K12, K13 VS S/D, L/D = ]., J = 100, m=20
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Conclusions

» Develop efficient BEM-FEM model for suction
caissons in stratified soils

» Vertical dynamic interaction is dominated by
shear waves

» Normalization by Kisolated is key:

» [ /D and J increases interaction strength
» Similar behavior between homogeneous and Gibson
» Criteria for neglecting interaction

» Future: closed-form formulae or simplified
methodology for engineering purposes
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