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ABSTRACT

Offshore wind energy is playing an important role in the future mix of renewable sources
for electrical power production. Although floating technology is taking off in a powerful
way, more mature fixed wind turbines are still strongly growing in number and capabilities
[1]. For challenging soft soils, suction caissons are often considered for geotechnical and
ease of installation/removal reasons. In this contribution, the vertical dynamic interaction
of a tetrapod arrangement of suctions caissons is studied through an specially tailored
boundary element - shell finite element coupled model. The model is an evolution of
a previous one [2], where the boundary element hypersingular formulation required to
deal with the shell coupling is no longer needed, and an already available multilayered
viscoelastic half-space Green’s function [3] can be hence used. The discretization is thus
reduced to only the suction caisson skirt and lid. The dynamic interaction is observed
from the point of view of stiffnesses. The influence of the foundation spacing and soil
properties on the resulting impedance matrix is studied. As expected, the most relevant
factor on the dynamic interaction is the spacing. Impedance curves contain local minima
and maxima at frequencies corresponding to wavelength fractions of the spacing.
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[2] J.D.R Bordón, J.J. Aznárez, O. Maeso. Dynamic model of open shell structures
buried in poroelastic soils. Computational Mechanics 60, 269–288, 2017.

[3] R.Y.S. Pak, B.B. Guzina. Three-dimensional Green’s functions for a multilayered
half-space in displacement potentials. Journal of Engineering Mechanics 128, 449–
461, 2002.

544



Vertical dynamic interaction between

suction caissons in tetrapod arrangements

for offshore wind turbines

Jacob D.R. Bordón Fidel Garćıa Luis A. Padrón
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OWT environment and design
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Figure: Challenging environment and design. Image source: D. Schroeder
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Fundamental frequency challenge
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Modeling assumptions and aim
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Vertical interaction
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Vertical interaction
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Vertical interaction
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BEM-FEM numerical approach (overview)
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BEM-FEM numerical approach (some details)
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Horizontally Layered Half-space Green’s function
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where (t∗lk)Mindlin are tractions of the homogeneous half-space
GF in statics.

I Overall computational cost – a trade-off between:

I DOF reduction: smaller LSE
I HLGF cost >> fundamental solution cost: costly LSE

I Develop strategies to reduce the number of HLGF evaluations.
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Horizontally Layered Half-space Green’s function
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BEM-FEM model

Quadratic 9-node elements

Figure: Example mesh: L/D = 2, s/D = 4
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BEM-FEM model: lid

Quadratic 9-node boundary elements

Figure: Example mesh: L/D = 2, s/D = 4
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BEM-FEM model: skirt

Quadratic 9-node shell finite elements (MITC9)

Figure: Example mesh: L/D = 2, s/D = 4
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BEM-FEM model: soil-skirt interface

Quadratic 9-node BEM body load surface elements

Figure: Example mesh: L/D = 2, s/D = 4

Perfect contact
conditions:

uss = uskirt

bss + fskirt = 0
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Cases: geometry
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Cases: material properties
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Cases: frequencies
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Kss vs L/D vs s/D, J = 100, homogeneous soil
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Kss vs s/D vs m, J = 100, L/D = 2
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Kss vs s/D vs m, J = 100, L/D = 2
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Kss vs s/D vs m, J = 100, L/D = 2
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Kaa vs Ksa vs Kss, s/D = 8, L/D = 1, homog.
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Kaa vs Ksa vs Kss, s/D = 8, L/D = 1, homog.
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Vertical interaction (K11, K12, K13)
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K11, K12, K13 vs s/D, L/D = 1, J = 100, m = 0
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Conclusions

I Develop efficient BEM-FEM model for suction
caissons in stratified soils

I Vertical dynamic interaction is dominated by
shear waves

I Normalization by Kisolated is key:
I L/D and J increases interaction strength
I Similar behavior between homogeneous and Gibson
I Criteria for neglecting interaction

I Future: closed-form formulae or simplified
methodology for engineering purposes
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