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Abstract

This paper deals with two-dimensional time harmonic fluid-structure interaction problems when the fluid is at rest, and the elastic bodies

have small thicknesses. A BEM-FEM numerical approach is used, where the BEM is applied to the fluid, and the structural FEM is applied

to the thin elastic bodies. From the fluid point of view, the thin elastic bodies are considered of null thickness. This assumption is treated

using simultaneously the Singular Boundary Integral Equation and the Hypersingular Boundary Integral Equation. It is assumed that the

thin elastic bodies are under the Euler-Bernoulli hypotheses with added rotational inertia. The BEM equations (fluid) and the FEM equations

(thin bodies) are coupled using appropriate equilibrium and compatibility conditions. The developed BEM-FEM model requires a simple

discretization and leads to a small number of degrees of freedom, although it has some limitations that are studied in some depth. This

approach is validated with existing results in the field of sound barriers, and new results using complex barrier shapes are presented. Also, a

parametric study about a straight wall immersed in a fluid is done, which provides results of practical usage.

Keywords: SBIE/HBIE dual boundary formulation, BEM-FEM coupling, thin bodies, fluid-structure interaction, wave

propagation, flexible sound barriers

1. Introduction

The Boundary Element Method (BEM) and the Finite Element

Method (FEM) can handle problems such as heat conduction, elec-

trostatics, elastostatics and elastodynamics, just to name a few. Nev-

ertheless, each method has its own strengths and weaknesses [1].

The combination of both methods comes up when neither the FEM

nor the BEM is adequate to face a problem. This is the case of the

Fluid-Structure Interaction (FSI) problem posed here, in which there

are thin elastic bodies surrounded by a fluid where wave propaga-

tion phenomena take place.

The BEM is widely used for time harmonic wave propagation

in fluids, viscoelastic solids, poroelastic solids, and when regions of

any of these types are interacting with each other. When each re-

gion is treated by the BEM, the approach is called BEM-BEM. A lot

of work has been done about it when applied to dynamic Fluid-Soil-

Structure Interaction (FSSI) and its particular cases: FSI and Soil-

Structure Interaction (SSI). In this field, the work of Domínguez and

co-workers [2, 3, 4] must be highlighted. There are very complete re-

views [5, 6, 7]. Also, the BEM-BEM approach for FSI problems in the

field of sound barriers has been studied [8]. Taking this into account,

the problem posed here can be solved by the BEM-BEM approach.

However, when thin elastic solids appear in a problem, some interre-

lated difficulties emerge in the BEM-BEM approach: discretization

needs, quasi-singular integration accuracy, and the Linear System of

Equations (LSE) degeneracy.

A thin body is characterized by having faces very close each other.

Depending on the element size, the relative distance between an el-

ement and any node not belonging to it can be very small. This rela-

tive distance is the most relevant factor when evaluating BEM quasi-
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singular integrals. Thus, the maximum size of the elements heav-

ily depends on the quasi-singular integration capabilities. Several

quasi-singular integration strategies have been developed through

the years. It is worth mentioning two simple but powerful classical

strategies: adaptative subdivision with selection of the quadrature

order [9, 10] and adaptative cubic transformation [11, 12]; a mix of

both is used in this work. When body thickness is too small, more

elaborated strategies are needed. Among others, Liu and co-workers

worked on it in 2D [13] and in 3D [14, 15, 16], and they showed

that very thin bodies can be efficiently treated. Recent works con-

tain brief updated reviews of quasi-singular integration strategies

[17, 18, 19].

Given an exterior region with a thin body inside it, Krishnasamy

et al. [20] showed that if only Singular Boundary Integral Equations

(SBIE) are applied to build the BEM final LSE, then its condition

number get worse as thickness decreases, becoming completely de-

generated if the thickness is null. If the thin body is not surrounded

by an exterior region, i.e. the thin body is considered alone, Liu

et al. [15] demonstrated that, if the primary variables are not con-

strained at all boundaries, then the LSE does not degenerate. In

both cases, the discretization must be carefully done, and a capable

quasi-singular strategy is mandatory.

If the thin body region is a viscoelastic region, the well known

structural beam/shell hypotheses are applicable to model it. Doing

so, its dimensional space is reduced to 1D for a beam, and to 2D for

a shell. The FEM is appropriate to discretize these structural ele-

ments, which reduces heavily the discretization effort and the num-

ber of degrees of freedom when compared to the BEM. However,

from the point of view of the region that contains the thin body, the

FEM discretization is seen as a degenerated geometry, i.e. a null

thickness geometry, that can not be directly handled by the con-

ventional BEM. Two ways of solving this difficulty for our problem

are: the multiregion approach [21], or employing the Hypersingular
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BIE (HBIE) in combination with the SBIE [20]. The multiregion ap-

proach needs the definition of some artificial boundaries, which can

be hard to do. However, the SBIE/HBIE dual boundary formulation

is applied directly to the null thickness geometry.

The SBIE/HBIE dual boundary formulation emerged to solve frac-

ture mechanics problems [22, 23], but it has been applied to other

problems like sound propagation [24, 25, 26, 27]. Its main drawback

is handling with the HBIE, which is more difficult to treat than the

SBIE. The HBIE has received much attention, particularly about the

continuity requirements [28, 29, 30] and regularization techniques

[31, 32, 33, 34]. The Cauchy Principal Value (CPV) and Hadamard

Finite Part (HFP) definitions are often used to deal with it, see for ex-

ample [35]. Nevertheless, in line with Guiggiani [32], we prefer mak-

ing explicit the whole limiting process in order to see clearly how

the unbounded terms cancel out, and only regular or weakly singu-

lar integrals remain. We propose coupling directly the SBIE/HBIE

dual boundary formulation with the structural FEM.

The idea of BEM-FEM coupling arose since the BEM beginnings

[1]. It is used to overcome difficulties such as non-linearities, or to

reduce the discretization and computational effort, that is our case.

An example of its usefulness could be seen in the work of Padrón

et al. [36, 37, 38], who coupled FEM beams (piles) with 3D BEM

viscoelastic regions (stratified soils). Most works about BEM-FEM

applied to FSI deal with closed thin structures like boxes, cylinders,

spheres, ships or submarines [39, 40], where a dual boundary for-

mulation is not needed. A much smaller number of works deal with

open thin structures, and their methodologies differ from ours. Jean

[41] used a variational approach discretized with 2D boundary el-

ements for the fluid and 2D finite elements for the structure. Z.S.

Chen et al. [42] used a Symmetric Galerkin BEM for 3D FSI prob-

lems. Recently, L.L. Chen et al. [43] used the FEM in combination

with the Wideband Fast Multipole Method to handle 2D FSI prob-

lems.

The proposed direct BEM-FEM approach is presented as fol-

lows. The fluid is treated by the BEM. From the fluid region point

of view, the structure is considered as a null thickness body, and the

simultaneous application of the SBIE and the HBIE is used to handle

it. The fluid basic formulation is shown at 2.1, and some details of

the HBIE regularization process are given at Appendix A. The thin

bodies are discretized using structural straight FEM elements with

Euler-Bernoulli hypotheses with added rotational inertia, which is

shown at 2.2. At 2.3, the BEM equations (fluid) and the FEM equa-

tions (thin bodies) are coupled using equilibrium and compatibility

conditions. Two limitations exist in this approach: the null thick-

ness assumption of the thin elastic body from the fluid point of view,

and the Euler-Bernoulli hypotheses of the thin elastic body; they are

studied at 2.4. The proposed BEM-FEM approach is validated at 3.1.

In order to demonstrate its potential, complex sound barrier shapes

are studied at 3.2, and a parametric study about a straight wall is

done at 3.3.

2. Methodology

The problem consists in the harmonic analysis of a two-dimensional

domain composed by a fluid region and many viscoelastic thin re-

gions (thin bodies). Onwards, as usual in the harmonic analysis, the

frequency is denoted as f , and the angular frequency is ω= 2π f .

2.1. Fluid (BEM)

The fluid is considered homogeneous, inviscid, at rest, its body

forces are neglected, and the excitations are low enough to admit

small disturbances (linear behaviour). As it is well known, under

these hypotheses the governing equation is the Helmholtz PDE.

Let Ω⊂ R2 be a fluid region, ρ̃ its density, and c̃ its wave propa-

gation speed, the pressure p at any point x ∈Ω obeys:

∇
2p +k2p = 0 in Ω (1)

where k is the wave number (k = ω/c̃), and sources are neglected

for the sake of brevity. The boundary of the region Ω is denoted as

Γ= ∂Ω, and the normal vector n is defined outwards. The pressure p

acts as the primary variable, while the secondary variable could be

the pressure flux q or the displacement in the normal direction un :

q =
∂p

∂n
, un =

1

ρ̃ω2

∂p

∂n
(2)

The latter is physically more meaningful than the former, and is used

when establishing compatibility conditions. However, q is chosen as

the secondary variable, which is more common in the literature.

2.1.1. Singular BIE

The pressure BIE of (1) applied at a point xi (collocation point)

is:

cpi +

∫

Γ

q∗p dΓ=

∫

Γ

p∗q dΓ (3)

where each term of the equation is:

c =







0, xi ∉Ω∪Γ

1, xi ∈Ω

]0,1[ , xi ∈ Γ

p∗
=

1

2π
K0 (i kr )

q∗
=−

i k

2π
K1 (i kr )

∂r

∂n

(4)

where i is the imaginary unit, r =
∣

∣x−xi

∣

∣ is the distance between ob-

servation and collocation points, and Kn (z) is the modified Bessel

function of the second kind, order n, and argument z. Kn (z) prop-

erties and expansions can be found in [44, Chapter 9].

When xi is taken to Γ, the integrals in (3) contain a singular-

ity, but they are integrable if a limiting process from inside or out-

side Ω is followed. The integration domain Γ is partitioned as Γ =

limǫ→0{(Γ− eǫ
i

)+Γ
ǫ
i

}, where eǫ
i

is the exclusion zone of Γ, and Γ
ǫ
i

is

an arc of radius ǫ that surrounds xi . The integration over Γ
ǫ
i

pro-

duces the free-term c, which is in the interval ]0,1[, being 1/2 if Γ is

smooth at the collocation point, i.e. Γ(xi ) ∈ C
1. The integrals over

Γ−eǫ
i

are at most weakly singular, as is well known. In this work, the

collocation points are placed at smooth boundary points, so, in the

following, the equations are written under this hypothesis.

If the boundary Γ is partitioned in Ne elements, Γ=∪
Ne
1

Υ j , and

geometry, p, and q are interpolated over each element Υ j using La-

grange elements, then the discretized SBIE can be written as:

1

2
φ

̃
i
·p ̃

+

j=Ne
∑

j=1

h
j

i
·p j

=

j=Ne
∑

j=1

g
j

i
·q j , xi

{

∈Υ ̃

∉ ∂Υ ̃
(5)

where h
j

i
and g

j

i
are the integral kernels of the element j when the

SBIE is applied at xi . The element ̃ is the one that contains xi , and

φ
̃
i

is the vector of shape functions of the element ̃ evaluated at xi .
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2.1.2. Hypersingular BIE

In order to obtain the pressure flux BIE, the derivative of the

pressure BIE with respect to a direction d is taken:

c

(

∂p

∂d

)

i
+

∫

Γ

∂q∗

∂d
p dΓ=

∫

Γ

∂p∗

∂d
q dΓ, xi ∉Γ (6)

where each term of the equation is:

c =

{

0, xi ∉Ω∪Γ

1, xi ∈Ω

∂p∗

∂d
=−

i k

2π
K1 (i kr )

∂r

∂d

∂q∗

∂d
=

i k

2π

[

i kK2 (i kr )
∂r

∂d

∂r

∂n
+

1

r
K1 (i kr )(d ·n)

]

(7)

When xi is taken to Γ, d = ni is used, where ni is the normal vec-

tor at the collocation point. The left-hand side integral of (6) con-

tains a singularity, which is stronger than the right-hand side inte-

gral of (6) and the integrals of (3). Thus, when xi is taken to Γ, the

pressure flux BIE is called the Hypersingular BIE. Given a hypersin-

gular integral I =
∫B

A F (x)/(x − xi )2 dx, A < xi < B , if F has certain

continuity properties, then I exists. F must belong to the Hölder

function space C
1,α [30]. To do so, the pressure must be differen-

tiable at the collocation point, i.e. p
(

xi

)

∈C
1.

Similarly to the SBIE, a limiting process where Γ = limǫ→0{(Γ−

eǫ
i

)+Γ
ǫ
i

} is needed. The integration over Γǫ
i

not only produces a free-

term, but also produces an unbounded term:

1

2

(

∂p

∂ni

)

i
−

pi

π
lim
ǫ→0

(

1

ǫ

)

+ lim
ǫ→0

∫

Γ−eǫ
i

∂q∗

∂ni
p dΓ= lim

ǫ→0

∫

Γ−eǫ
i

∂p∗

∂ni
q dΓ (8)

In the following, the right-hand and the left-hand side integrals of

(8) are called L and M , respectively. L is regular since has the same

kind of singularity as the left-hand side integral of (3). Taking into

account that K1(i kr ) = 1/(i kr )+KR
1 (i kr ), where KR

1 (i kr ) =O (r lnr ),

M can be decomposed into:

M =
(i k)2

2π
lim
ǫ→0

∫

Γ−eǫ
i

K2 (i kr )
∂r

∂ni

∂r

∂n
p dΓ+

+
1

2π
lim
ǫ→0

∫

Γ−eǫ
i

1

r 2

(

ni ·n
)

p dΓ

+
i k

2π
lim
ǫ→0

∫

Γ−eǫ
i

1

r
KR

1 (i kr )
(

ni ·n
)

p dΓ= M1 +M2 +M3

(9)

where M1 is regular, M2 is hypersingular and M3 is weakly singular.

A regularization process is required for M2 (see Appendix A). It is

based on Sáez et al. contributions [45], who applied it to elastostat-

ics. Unlike Sáez et al., M2 is regularized before discretization, which

gives some interesting insights into this integral. Through the regu-

larization process of M2 emerges an unbounded term that cancels

out the one that appears in (8), which leads to the regularized HBIE.

As did with the SBIE, the discretized HBIE can be written as:

j=Ne
∑

j=1

m
j

i
·p j

=−
1

2
φ

̃
i
·q ̃

+

j=Ne
∑

j=1

l
j

i
·q j , xi

{

∈Υ ̃

∉ ∂Υ ̃
(10)

where m
j

i
and l

j

i
are the integral kernels of the element j when the

HBIE is applied at xi with a normal ni . Only the integral kernel vec-

tor m
̃
i

of the element ̃ uses the regularized M .

w

Γ

Ω

Γ

Ω

w → 0

Figure 1: Approximation when using the null thickness assumption

2.1.3. BIEs for coincident boundaries

When nearly coincident boundaries (nearly coplanar boundaries)

belong to the same region (i.e. a crack, a thin void, a thin inclu-

sion, or a thin scatterer) the LSE is nearly-singular. In the limit when

boundaries are coincident (null thickness discontinuity),the LSE be-

comes singular. The simultaneous application of the SBIE and the

HBIE can solve this difficulty [20]. The null thickness assumption

is very interesting because it can greatly reduce the discretization

and the computational effort at the expense of an approximation of

the field around the discontinuity (see Figure 1). The computational

cost reduction can be > 60% [24, Table 1], depending on the prob-

lem, the analysed frequencies, and the implementation.

LetΓbe the boundary of a regionΩ, resulting from the approach-

ing of two identical boundaries, whose normals are pointing at each

other, until they are coincident. One of the boundaries is chosen as

the positive face Γ
+ of Γ, which is used as the reference face for the

whole Γ. Thus the normal vectors n and ni are defined on it. Each

face has two variables, the pressure and the pressure flux, so there

are four variables at the collocation point i : p+
i

, q+
i

, p−
i

and q−
i

. The

limiting process can be done using the integration domain depicted

in Figure 2:

Γ= lim
ǫ→0

{[

Γ
+
−

(

eǫi

)+
]

+
(

Γ
ǫ
i

)+
+

[

Γ
−
−

(

eǫi

)−]

+
(

Γ
ǫ
i

)−
}

(11)

The singularity is avoided twice: when integrating overΓ+, and when

integrating over Γ−. The resulting SBIE is:

1

2
p+

i + lim
ǫ→0

∫

Γ+−

(

eǫ
i

)+

q∗p dΓi +
1

2
p−

i + lim
ǫ→0

∫

Γ−−

(

eǫ
i

)−

q∗p dΓi =

= lim
ǫ→0

∫

Γ+−

(

eǫ
i

)+

p∗q dΓ+ lim
ǫ→0

∫

Γ−−

(

eǫ
i

)−

p∗q dΓ, xi ∈ Γ

(12)

and the resulting HBIE is:

1

2
q+

i −
p+

i

π
lim
ǫ→0

(

1

ǫ

)

+ lim
ǫ→0

∫

Γ+−

(

eǫ
i

)+

∂q∗

∂ni
p dΓ−

−
1

2
q−

i −
p−

i

π
lim
ǫ→0

(

1

ǫ

)

+ lim
ǫ→0

∫

Γ−−

(

eǫ
i

)−

∂q∗

∂ni
p dΓ=

= lim
ǫ→0

∫

Γ+−

(

eǫ
i

)+

∂p∗

∂ni
q dΓ+ lim

ǫ→0

∫

Γ−−

(

eǫ
i

)−

∂p∗

∂ni
q dΓ, xi ∈Γ

(13)

where q+
i

= (∂p+/∂ni )i and q−
i

= −(∂p−/∂ni )i . Similarly to 2.1.2,

two unbounded terms have been produced when solving the inte-

grals over (Γǫ
i

)+ and (Γǫ
i

)−. Likewise, the regularization process of

the left hand side integrals of (13) produces two unbounded terms

that cancel out the previous ones.
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Ω

Γ
+

Ω

Γ
−

w → 0

n= n
+

ni = n
+

i

−ni = n
−

i

(

e
ǫ

i

)

+

(

e
ǫ

i

)

−

−n = n
−

face +

face −

(

Γ
ǫ

i

)

+

(

Γ
ǫ

i

)

−

Figure 2: Singularity treatment for coincident boundaries

The discretization process is similar to that followed for the SBIE

and the HBIE, with the condition that the faces Γ
+ and Γ

− have the

same discretization. Because of that, it is possible to build a new

type of element Υ j that is composed by two sub-elements Υ
+
j

and

Υ
−
j

. The variables of Υ j can be written as:

p j
=

{
(

p j
)+ (

p j
)−

}

, q j
=

{
(

q j
)+ (

q j
)−

}

(14)

Taking advantage of n = n+ = −n−, the integral kernels of Υ j can

be written only in terms of the integral kernels of the sub-element

Υ
+
j

. The discretized SBIE and the discretized HBIE for a collocation

point xi belonging to coincident boundaries are:

1

2

{

φ
̃
i

φ
̃
i

}

·p ̃
+

j=Ne
∑

j=1

h
j

i
·p j

=

j=Ne
∑

j=1

g
j

i
·q j (15)

j=Ne
∑

j=1

m
j

i
·p j

=
1

2

{

−φ
̃
i

φ
̃
i

}

·q ̃
+

j=Ne
∑

j=1

l
j

i
·q j (16)

If the fluid is uncoupled, then these equations are handled in the

usual way, but havingΓ
+ and Γ

− independent boundary conditions.

If the fluid is coupled with a thin elastic body, which is the main in-

put of this paper, these equations together with those presented in

2.2 and 2.3 are used.

2.1.4. Discretization and collocation procedure

The discretized equations written above have been developed

underΓ
(

xi

)

∈C
1 and p

(

xi

)

∈C
1 hypotheses at the collocation point.

By doing so, the collocation procedure described here can be ap-

plied simultaneously to the HBIE and the SBIE at coincident bound-

aries, giving a uniform approach to build the BEM equations.

The C
1 requirement can be fulfilled by many ways, among oth-

ers: cubic splines [46], an interpolation algorithm [47], Overhauser

elements [48] or discontinuous Lagrange elements [45]. The way we

deal with it is using continuous isoparametric Lagrange elements

with non-nodal collocation at vertex nodes, and adding up the BIEs

associated with each vertex node. This strategy is known as the Mul-

tiple Collocation Approach (MCA), and it was introduced by Gallego

et al. [49, 50, 51]. It is very simple, gives accurate results, and makes

BEM-FEM coupling relatively easy. In this work, quadratic elements

are used.

Given a vertex node i and its elements Υ1 and Υ2, two SBIEs are

added up to build the equation associated with the node: one SBIE

i x
1
i ′

x
2
i ′ Υ2 Υ1

ξ1
i

ξ2
i

ξ1
i ′
= ξ1

i
(1−δ)

ξ2
i ′
= ξ2

i
(1−δ)

Ω

Γ

n

Collocation pointNode Vertex node

+

++ +

+

Figure 3: Multiple Collocation Approach

is collocated inside the element 1 at x1
i ′

, and the other SBIE is collo-

cated inside the element 2 at x2
i ′

; the same is done with HBIEs (see

Figure 3). Let δ be defined as the displacement of the collocation

point towards the inside of the element. Given an element with a

local system of coordinates −1 ≤ ξ ≤ 1, if ξi is the nodal position of

the node i , then the local coordinate ξi ′ of the displaced collocation

point is:

ξi ′ = ξi (1−δ) ,0 < δ< 1 ⇒ xi ′ = x
(

ξi ′
)

(17)

Note that δ= 0 gives a collocation point at the nodal position, while

δ= 1 gives a collocation point at the element centre.

A question that arises is how much the collocation point should

be displaced from the nodal position. Ariza et al. [51] used a value of

δ = 0.25, although it was not explained why. To the authors’ knowl-

edge, there is no published work about an optimum value of δ for

the MCA. Nevertheless, the MCA can be related to discontinuous

elements because the set-up of the collocation points is the same.

Marburg [52] studied the optimum position of nodes of discontin-

uous elements for a sound propagation problem. He found that

nodes located at the zeros of the Legendre polynomials gives opti-

mum results. He also stated that the hypersingular formulation may

have other optimal locations. Thus, we use δ= 0.2254.

2.2. Thin elastic bodies (FEM)

In a plane deformation problem, a thin body has infinite width

along x3, and finite thickness w and length L in the x1 − x2 plane.

Under these conditions, the thin body could be considered as a beam

with a cross section A = w · 1, a length L, and a modified Young’s

modulus E = Em/(1−ν2), where Em is the Young’s modulus of the

material and ν its Poisson’s ratio. Onwards, when the term “beam”

is used, it must be understood this way.

Let Ωs be a thin elastic body. It can be split into straight beam

FEM elements Υ j , which are under the Euler-Bernoulli hypotheses

with added rotational inertia. In order to have a node-to-node cor-

respondence with a quadratic BEM element, a beam FEM element

with three nodes and eight degrees of freedom is considered [36]

(see Figure 4). The vertex nodes i = 1,2 have translation u
(i)
1 ,u

(i)
2

and rotation θ(i) , while the central node i = 3 has only translation

u
(3)
1 ,u

(3)
2 . Each element has a density ρ, a modified elastic modulus

E , a thickness w , an inertia I = (1/12) ·w3 ·1, and a length L. Damp-

ing of hysteretic type is introduced by defining a complex Young’s

modulus E = Re(E)(1+ i 2ξ), where ξ is the damping coefficient.

Because axial behaviour and lateral behaviour are decoupled,

axial and lateral elemental matrices can be obtained separately in
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Figure 4: Three nodes / eight degrees of freedom FEM beam element

the local system of coordinates. From now on, variables carrying

an apostrophe are variables expressed in the local system of coordi-

nates.

The axial displacement u′
1 is interpolated using a Lagrange quadratic

element:

u′
1 (ξ) =

{

φ1 φ2 φ3
}

·

{

u′
1

(1)
u′

1
(2)

u′
1

(3)
}T

=φT
·u′a

(18)

The axial stiffness matrix and the axial translation mass matrix are

obtained by using the Principle of Virtual Displacements, respec-

tively:

K ′
i j

a
=

2

L
E A

∫1

−1

dφi

dξ

dφ j

dξ
dξ

M ′
i j

t a
=

L

2
ρA

∫1

−1
φiφ j dξ

(19)

The lateral displacement u′
2 is taken as a fourth degree polyno-

mial in −1 ≤ ξ≤ 1. The lateral displacement and the rotation are:

u′
2 (ξ) =ϕT

·u′l , θ (ξ) =ϑT
·u′l (20)

where:

u′l
=

{

u′
2

(1)
θ(1) u′

2
(2)

θ(2) u′
2

(3)
}T

(21)
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(22)

The lateral stiffness matrix, the lateral translation mass matrix and

the lateral rotation mass matrix are obtained by using the Principle

of Virtual Displacements, respectively:

K ′
i j

l
=

(

2

L

)3

E I

∫1

−1

d2ϕi

dξ2

d2ϕ j

dξ2
dξ

M ′
i j

t l
=

L

2
ρA

∫1

−1
ϕiϕ j dξ

M ′
i j

r
=

L

2
ρI

∫1

−1
ϑiϑ j dξ

(23)

The lateral distributed load s′2 along the beam is interpolated using

a Lagrange quadratic element:

s′2 (ξ) =
{

φ1 φ2 φ3
}

·

{

s′2
(1)

s′2
(2)

s′2
(3)

}T
=φT

·s′2 (24)
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Figure 5: Coupling between sub-elements Υ+
j

, Υ−
j

and Υ
s
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(local numbering)

The load s′2 can be transformed into equivalent nodal forces and

moments by using the Principle of Virtual Work:

S ′
i j

l
=

L

2

∫1

−1
ϑiφ j dξ, i = 1,. . . ,5, j = 1,. . . ,3 (25)

The axial and lateral kinematic variables can be gathered together

in u′, and the lateral distributed load vector can be reordered as s′:

u′
=

{

u′
1

(1)
u′

2
(1)

θ(1) u′
1

(2)
u′

2
(2)

θ(2) u′
1

(3)
u′

2
(3)

}T

s′ =
{

∅ s′2
(1)

∅ ∅ s′2
(2)

∅ ∅ s′2
(3)

}T

(26)

so that a stiffness matrix K′ is obtained by combining K′a and K′l , a

mass matrix M′ is obtained by combining M′t a
and M′t l

+M′r , and

a distributed load matrix S′ is obtained by reordering the matrix S′
l
.

In the harmonic regime, the dynamic equilibrium equation in global

coordinates for a given element is:

[

L ·

[

K′
−ω2M′

]

·LT
]

·u =
[

L ·S′
]

·s′

Kh ·u = Q ·s′
(27)

where L is the coordinate transformation matrix of the element. This

FEM equation is assembled considering all vertex nodes as rigid joints.

It must be noticed that s′ (distributed lateral loads) is unknown when

coupled with the fluid. The element matrices can be easily obtained

from (19), (23) and (25), or seen in [36] (except M′r ).

2.3. Fluid-structure coupling (BEM-FEM)

Once the fluid equations (BEM) and the thin elastic bodies equa-

tions (FEM) have been posed, it is possible to combine both by using

coupling equations. Let Υ j be a BEM-FEM fluid-structure element

composed by three sub-elements: Υ
+
j

, Υ−
j

and Υ
s
j
; being Υ

+
j

and

Υ
−
j

the sub-elements associated with both faces of the coincident

boundaries of the fluid, and Υ
s
j

the sub-element associated with the

thin elastic body (see Figure 5). Since the fluid is inviscid, it inter-

acts only laterally with the thin elastic body. Therefore, only lateral

compatibility and equilibrium have to be established. The normal
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displacements of the fluid at the boundary (2) must coincide with

the beam lateral displacements u′
2, for a given node i :

u′
2

(i)
=−

1

ρ̃ω2
q+

i , u′
2

(i)
=

1

ρ̃ω2
q−

i (28)

that leads to q+
i
= −q−

i
. In (27), the displacements are expressed in

the global system of coordinates, so their projection onto the x′2 axis

gives the lateral displacements:

u(i)
·x′2 =−

1

ρ̃ω2
q+

i , u(i)
·x′2 =

1

ρ̃ω2
q−

i (29)

which are the compatibility equations for a node i . Note that these

equations relate a primary variable of the structure (u) with a sec-

ondary variable of the fluid (pressure flux q). Thus, if the node i is a

vertex node shared by two non-collinear elements, then the pressure

flux q is undefined there (corner problem), being defined only just

before and after the vertex. If both elements are almost collinear,

and we are not interested in local effects, then it is acceptable as-

suming that the pressure flux is continuous. For this case, (29) is

posed for each element and added up to build a unique compatibil-

ity condition. If both elements are far from collinear, the BEM vari-

ables of the vertex node are doubled, so that two sets of compatibil-

ity equations like (29) are posed. The pressure difference between

both faces is equal to the lateral distributed load at each node of the

beam:

s′2
(i)

= p−
i −p+

i (30)

which is the equilibrium equation for a node i .

For each vertex node there are eight variables: p+
i

, q+
i

, p−
i

, q−
i

,

u(i)
1

, u(i)
2

, θ(i) and s′2
(i)

; and eight equations: SBIE for node i (15),

HBIE for node i (16), 2 compatibility equations (29), 1 equilibrium

(30), and 3 FEM equations from (27). For each central node, the sit-

uation is similar to the vertex node, except that the rotation and its

associated FEM equation does not exist. Although the number of

unknowns are equal to the number of equations, more conditions

are required. The structure needs the necessary kinematic bound-

ary conditions in order to avoid any rigid body motion.

The number of unknowns and equations for each node can be

easily reduced from 8 to 6 (7 to 5 for the central node). It can be

done by substituting (30) in (27), by using only the first equation of

(29), and by substituting q+ = −q− in (15) and (16) for every node

of a BEM-FEM element. This reduction considerably decreases the

computational effort.

2.4. Limitations

There are two relevant limitations in the proposed model: the

null thickness assumption of the thin elastic body from the fluid

point of view, and the Euler-Bernoulli hypotheses of the thin elas-

tic body. For practical reasons, it is necessary establishing a validity

range. Since studying the limitations using the complete FSI model

needs many parameters, it seems to be more efficient studying each

limitation in an uncoupled way.

The null thickness assumption can be studied considering the

thin body as a rigid obstacle. Lacerda et al. [24] worked about this

problem in the sound barriers field. They made a study comparing

results from real geometries and their null thickness geometries at

certain points and frequencies. It is interesting to expand and gen-

eralize this topic by using a dimensionless problem.

The experiment consists of a rectangular obstacle of length L

and thickness w within a fluid (ρ̃, c̃), where a plane wave is prop-

agating perpendicularly to the length with an angular frequency ω.
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Figure 6: Average relative error of the null thickness assumption
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Figure 7: Relative error of the null thickness assumption (L/w = 100)

The dimensionless frequency a0 = (ωL) /c̃ is used. Eight cases are

solved: seven different geometrical slendernesses L/w = {10, 20, 50,

100, 200, 500, 1000}, and the case with null thickness. A conservative

discretization of six quadratic elements per wavelength is used.

Figure 6 shows the average relative error of the pressure field

over the front face of the obstacle versus the dimensionless frequency.

It can be seen that the error decreases as geometrical slenderness in-

creases, which is an obvious result. For a0 < 2, the error decreases

as a0 decreases, being possible to define a frequency limit which

ensures an error level. The maximum average error occurs around

a0 = 2, being: 10% for L/w = 10, 2% for L/w = 100 and 0.3% for

L/w = 1000. For a0 > 2, the error slowly increases if L/w > 200, and

slowly decreases if L/w < 200.

Figure 7 shows the relative error of the pressure at some selected

nodes of the front face versus the dimensionless frequency,for L/w =

100. For a0 < 1 the error is approximately the same at all points. For

a0 > 1, the error near the tip is around twice the error at points far

from the tip. This behaviour also occurs for other slendernesses.

The Euler-Bernoulli hypotheses can be studied ignoring the fluid.

A remarkable paper by Han et al. [53] studies the most widespread

beam theories in dynamics, including our Euler-Bernoulli with added

rotational inertia (called Rayleigh theory in that paper). Based on

the study, Han et al. recommend using the Euler-Bernoulli theory

when L/w > 29. Nevertheless, from [53, Figure 22], where the first
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xs = (−2.3,0.5)

0.01 m

3.00 m

x1

x2

Reflecting ground

Real body

Null thickness assumptionPoint source

Ω f : air Ωs : wood, glass, paraglass

Figure 8: Noise barrier problem studied by Jean [41] (thickness not to scale)

Ωs ρ
[

kg/m3
]

E
[

MN/m2
]

ν ξ

Wood 650 12.0 0.01 0.0100

Glass 2400 87.0 0.24 0.0005

Paraglass 1190 3.3 0.40 0.0150

Table 1: Materials for the barrier considered by Jean [41]

natural frequency versus the mechanical slenderness is studied, it

can be seen that the Euler-Bernoulli theory is appropriate even when

L/w > 10.

Thus, the studied limitations have compatible validity ranges.

The methodology is valid for geometrical slendernesses greater than

10. However, it must be taken into account that the error produced

by the approximations depends on the dimensionless frequency and

geometrical slenderness.

3. Results and discussion

3.1. Validation

The proposed model has been validated with results published

by Jean [41], where a simple noise barrier problem is studied. The

problem description is outlined in Figure 8. The fluid Ω f is air with

ρ̃ = 1.3 kg/m3 and c̃ = 340 m/s. The thin elastic body Ωs is a simple

noise barrier 3 m high and 0.01 m thick, and it is clamped to the

ground. Three different materials are considered for the barrier Ω f

(see Table 1). The ground is a perfectly reflecting surface, i.e. the

fluid displacement at the ground is null. A point source located at

xs = (−2.3,0.5) is used. The point source is easily added to the BEM

equations, as shown in [54].

A comparison between results from Jean [41] and results from

the proposed model is shown in Figure 9. The results from [41] are

shown as a coloured background image from the original paper. The

figure shows three graphs, one for each material. The y axis of each

plot is the difference between pressures absolute values at a point x

when using a rigid barrier (q = 0) and when using a flexible barrier.

The natural frequencies fn of each case are plotted as vertical lines,

and they are calculated using the cantilever beam equations [55].

The model used in [41] takes into account the real geometry of

the barrier, while the proposed model uses a null thickness barrier.

The slenderness is L/w = 333, so from the barrier behaviour point

x1

x2

Point source Receivers area

6 m

60 m10 m

Barrier

10 m

Figure 10: Layout for studying complex sound barrier shapes

of view, the Euler-Bernoulli hypotheses are valid. From the fluid be-

haviour point of view, the null thickness assumption is also valid, see

section 2.4. Thus, the proposed model should be able to reproduce

the results from [41].

Figure 9 shows excellent agreement between Jean’s model and

the proposed model. Peak frequencies and amplitudes are very well

reproduced, although some small discrepancies appear in the wood

case at frequencies around 850 Hz.

3.2. Complex sound barrier shapes

Jean [41] made a broad study comparing results between flex-

ible and rigid simple sound barriers when varying material, thick-

ness, damping coefficient, receiver and source position, and barrier

height. In this section, the proposed model is used to study some

complex barrier shapes.

The layout of the numerical experiments is depicted in Figure

10. Two simple screen barriers (simple barrier and double simple

barrier) together with three multi-edge barrier shapes (Y barrier, U

barrier and E barrier) are considered. For each shape, all materials

from the Table 1 are used, the thickness is w = 0.01 m for all pieces,

and the effective height is 3 m. The point source is located at ground

level and 10 m ahead the barrier [56, 57, 54]. A grid of 3×11 receivers

covering 6×60 m2 is considered. A thousand frequencies uniformly

distributed in log10( f ) space from fmin = 20 Hz to fmax = 4000 Hz

are used.

Instead of taking the pressure as the variable of interest, the In-

sertion Loss IL is used [54]. The IL is the difference between pres-

sures (in dB) when there is no barrier and when the barrier is placed,

so it measures the efficiency of the barrier. We also consider the av-

erage Spectral Insertion Loss SIL, which is simply the average IL in

the spectrum, leading to a frequency-independent indicator. The IL

and the SIL are averaged values over all receivers.

In the literature, it is often assumed that noise barriers are rigid,

so it is interesting finding when this hypothesis is valid or not. A

first step is using the SIL, Figure 11 shows the SIL for all considered

barrier shapes and materials, including the rigid case. It is seen that

the rigid case is not conservative when using the SIL as an indicator.

However, the maximum difference between the rigid case and any

case is below 2 dB, being 1 dB for the simple barrier and double sim-

ple barrier, and 2 dB for the Y barrier. Thus, when a global indicator

such as the SIL is going to be studied, the rigid assumption seems to

be valid.

As Jean [41] showed for the simple barrier, when considering the

elastic nature of the barrier there is a widespread pressure increment

at low frequencies. Although this behaviour seems reasonable, it is

interesting to analyse what happens when barriers more complex

than the simple one are used. Figure 12 shows the IL spectrum for

all studied barrier shapes and materials, including the rigid case.

For low frequencies ( f < 200Hz) appreciable differences between

rigid and flexible barriers are obtained. The simple barrier behaves

as Jean described, with increments of pressure below 5dB, i.e. IL
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Figure 11: SIL for different barrier shapes and materials

decrements below 5dB. The other barrier shapes have IL decre-

ments below 10dB. For very low frequencies ( f < 80Hz) there is vir-

tually no noise attenuation. The considered complex barrier shapes

strongly influence the IL spectrum, especially at low frequencies.

For mid-high frequencies ( f > 500Hz) the IL spectrum is very

similar to a rigid barrier. For simple and double simple barriers, the

differences are very small. For Y, U and E barriers, the differences are

more noticeable, reaching up to 5dB at some frequencies. Neverthe-

less, these differences seem to be irrelevant for noise propagation

problems.

The human ear is less sensitive at low frequencies than at high

frequencies, so, at first, this behaviour at low frequencies could be

neglected. However, high frequencies are attenuated by losses in

the air and on the absorbing surfaces, while low frequencies are not.

Furthermore, when a building with windows closed is near the noise

barrier, low frequency noises may be amplified inside the building.

Therefore, depending on the context, the elasticity of a barrier simi-

lar to those studied should be considered.

3.3. Parametric study about a straight wall

In order to provide results of practical usage from this BEM-FEM

approach, a simple but useful problem is studied. The problem con-

sists of a straight wall (beam) (2L, w,ρ,Em ,ν,ξ) with its centre clamped,

surrounded by a fluid (ρ̃, c̃), where a pressure plane wave is propa-

gating with unity amplitude, perpendicular direction, and angular

frequency ω, see Figure 13.

The problem parameters can be reduced to six dimensionless

ones:

• Wave propagation speeds ratio: c̃/c, where c =
√

Em/ρ is the

beam axial wave propagation speed.

• Densities ratio: ρ̃/ρ.

• Geometrical slenderness: L/w .

• Dimensionless frequency: a0 = (ωL) /c̃.

• Damping coefficient: ξ

• Poisson’s ratio: ν

Table 2 shows the studied values of the dimensionless parame-

ters. The wave propagation speeds ratio and the densities ratio have

ranges that include the most extreme fluid-structure combinations.

The geometrical slenderness starts from L/w = 10 to L/w = 1000,

which are within the validity interval. The dimensionless frequency

8



Simple barrier

3 m

Double simple barrier

1 m

Y barrier

2 m

30o

U barrier

2 m

1 m

E barrier

2 m

1 m1 m

ParaglassGlassWoodRigid

f [Hz]

IL
[d

B
]

1000100 400020

25

20

15

10

5

0

-5

IL
[d

B
]

25

20

15

10

5

0

-5

IL
[d

B
]

25

20

15

10

5

0

-5

IL
[d

B
]

25

20

15

10

5

0

-5

IL
[d

B
]

25

20

15

10

5

0

-5

Figure 12: IL for different barrier shapes and materials

range has been chosen so that at least the first natural frequency is

clearly captured in all cases.

This parametric study is oriented to know the FSI coupling de-

gree. It seems obvious that a decoupled model could be used for

extreme cases, e.g. a thick steel wall in air. In these extreme cases,

the pressure field in the air is calculated considering a rigid obstacle,

and if needed, the pressure field can be used as the obstacle load.

However, there are cases like a thin wall in water, or a thin steel wall

in oil, etcetera, where interaction relevance is not so clear. All di-

mensionless parameters combinations of Table 2 are studied.

Figure 14 shows the average relative pressure difference at nodes

between a given case and the rigid case. The relative pressure dif-

ference is averaged over frequencies. It has been built in order to

know if a wall could be considered rigid or not when one is inter-

ested in the pressure field. It has been found that the wave propa-

gation speeds ratio has a small influence over it, so only c̃/c = 1/5

is used in the figure. The densities ratio and the geometrical slen-

derness strongly influence the average relative pressure differences.

The contour lines clearly show that, for a given pressure difference,

there is a region where the straight beam can be considered rigid. A

rule of thumb can be established: for L/w < 1000, if ρ̃/ρ < 1/1000,

the straight beam can be considered rigid.

Figure 15 shows the ω̃1/ω1 ratio, where ω̃1 is the first natural fre-

quency of the fluid-structure system, and ω1 is the first natural fre-

quency of the structure in vacuum [55]. It has been built in order to

know if the fluid must be taken into account when one is interested

in the straight beam behaviour. Analogously to the previous anal-

ysis, the wave propagation speeds ratio has a small influence over

ω̃1/ω1, so c̃/c = 1/5 is used in the figure. The densities ratio and

the geometrical slenderness are the main influences over the vari-

able of interest. The ω̃1/ω1 ratio is < 1, so the fluids roughly acts as

an added mass. The obtained ω̃1/ω1 contour lines can be used to

quantify the fluid influence over the FSI problem.
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Ω f : ρ̃, c̃

Ωs : 2L, w,ρ,Em ,ν,ξpincident

Figure 13: Problem configuration

Parameter Studied values

ξ 0.05

ν 0.30

c̃/c {1/50,1/20,1/10, 1/5,1/2, 1/1,2/1}

ρ̃/ρ
{

1/105,1/104 ,1/103 ,1/102 ,1/10,1/1,10/1
}

L/w {10,20,50,100, 200, 500,1000}

a0

[

10−4,10
]

Table 2: Studied values of each dimensionless parameter

4. Conclusions

In this paper, a 2D BEM-FEM approach for dynamic fluid-structure

problems when structures have small thicknesses is presented. The

fluid is considered homogeneous, inviscid, at rest, without body forces,

and with linear behaviour. From the fluid point of view, the struc-

ture is seen as a null thickness body. The null thickness assump-

tion is treated using the SBIE/HBIE dual formulation for thin bodies,

which is developed in detail, showing that only regular and weakly

singular integrals remain. A quadratic BE for pressure and pressure

flux interpolation is used. The structure is under the Euler-Bernoulli

hypotheses with added rotational inertia, which is discretized using

the FEM. An eight degrees of freedom FE which incorporates dis-

placements and rotations is used. The BEM and the FEM equations

are coupled using appropriate equilibrium and compatibility condi-

tions, which allows defining a BEM-FEM fluid-structure element for

thin structures.

This approach has been validated with existing results of sound

diffraction around a simple straight noise barrier [41]. For this prob-

lem, the vibro-acoustical response has remarkable differences when

compared with the response using the rigid hypothesis. It also varies

considerably with the chosen material. The obtained results show

excellent agreement.

The potential of this methodology is shown through two prob-

lems. The first problem is the study of some complex multi-edge

barrier shapes using the same materials as the validation problem.

The effects of considering the elasticity of the barrier are more no-

ticeable for these complex barrier shapes than for the simple bar-

rier. Thereby, at low frequencies ( f < 200Hz) flexible barriers are

less efficient, especially at very low frequencies ( f < 80Hz), where

there is virtually no noise attenuation. At mid-high frequencies ( f >

500Hz), the differences between rigid cases and flexible cases are

small. However, these differences are visible in the whole range of

studied frequencies, being stronger with the Y, U, and E barrier shapes.

The second problem is a parametric study over a straight wall sur-
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Figure 14: Average relative pressure differences with respect to the rigid case

(c̃/c = 1/5)
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Figure 15: First natural frequencies ω̃1/ω1 ratio (c̃/c = 1/5)

rounded by a fluid where a perpendicularly incident plane wave is

propagating. The coupling degree from the fluid and the structure

points of view is shown.
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Appendix A. M2 regularization process

The key point of the regularization is using∂r /∂Γ= (r/r )·t, where

t is the unit tangent of the boundaryΓ. ∂r /∂Γhas a jump discontinu-

ity from −1 to 1 at the collocation point (see Figure A.16). If |∂r /∂Γ|
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Figure A.16: Behaviour of several vectors near the collocation point

is considered, then a Taylor expansion for r → 0 can be done:
∣

∣

∣

∣

∂r

∂Γ

∣

∣

∣

∣

= cosα= 1+O

(

α2
)

= 1+O

(

r 2
)

(A.1)

where α ∝ r when r → 0. The dot product
(

ni ·n
)

behaves in the

same way as |∂r /∂Γ| does when r → 0 (see Figure A.16):

(

ni ·n
)

= cosα= 1+O

(

α2
)

= 1+O

(

r 2
)

(A.2)

In M2, if |∂r /∂Γ| is added up and substracted from ni ·n:

M2 =
1

2π
lim
ǫ→0

∫

Γ−eǫ
i

1

r 2

[

(

ni ·n
)

−

∣

∣

∣

∣

∂r

∂Γ

∣

∣

∣

∣

]

p dΓ+
1

2π
lim
ǫ→0

∫

Γ−eǫ
i

1

r 2

∣

∣

∣

∣

∂r

∂Γ

∣

∣

∣

∣

p dΓ=

= M21 +M22

(A.3)

where M21 is regular, but M22 is hypersingular. Because p
(

xi

)

∈C
1,

one can write a Taylor expansion of p around the collocation point:

p = pi +

(

∂p

∂r

)

i
r +O

(

r 2
)

(A.4)

where (∂p/∂r )i = (∂p/∂Γ)i /(∂r /∂Γ)i , and
(

∂p/∂Γ
)

i is the pressure

tangential derivative at the collocation point. In M22, if pi+
(

∂p/∂r
)

i r

is added up and substracted from p:

M22 =
1

2π
lim
ǫ→0

∫

Γ−eǫ
i

1

r 2
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(A.5)

where M221 is regular, M222 is hypersingular, and M223 is strongly

singular. In order to treat M222, Γ is split in two parts: ΓR and Γab.

Γab is a portion of Γ that contains the collocation point, and ΓR is

the complementary portion, which is regular. Given any collocation

point i ∈ Γab and any other observation point j ∈ Γab, the portion

Γab must meet also that: if j is before i then ∂r /∂Γ < 0, and if j is

after i then ∂r /∂Γ> 0. A regular part and a singular part is obtained

from M222:

M222 =
1

2π
pi

∫

ΓR

1

r 2

∣

∣

∣

∣

∂r

∂Γ

∣

∣
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1
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(A.6)

From the singular part, an unbounded term that cancels out the one

that appears in (8) emerges together with a finite part:

M222)ab =
1

2π
pi

[

lim
ǫ→0

∫ǫ

|rb |

(−1)

r 2
dr + lim

ǫ→0

∫|ra |

ǫ

(+1)

r 2
dr

]

=

=
pi

π
lim
ǫ→0

(

1

ǫ

)

−
pi

2π

(

1

|ra |
+

1
∣

∣rb

∣

∣

) (A.7)

where rb and ra are distance vectors of the extreme points of Γab.

The integral M223 is treated similarly to M222:

M223 =
1

2π

(
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)

i
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r
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It is easy to see that ∂r /∂Γ(∂r /∂Γ)i = |∂r /∂Γ| in Γab − eǫ
i

. Therefore,

M223)ab is analytically solvable:

M223)ab =
1

2π

(

∂p

∂Γ

)

i
lim
ǫ→0

∫

Γab−eǫ
i

1

r
dr =

1

2π

(

∂p

∂Γ

)

i

(

ln
∣

∣rb

∣

∣− ln |ra |
)

(A.9)

Once the regularized M2 is introduced in (8), the regularized HBIE

is obtained:

1

2

(

∂p

∂ni

)

i
+M1 +M21 +M221+

+ M222)R −
pi

2π

(

1

|ra |
+

1
∣

∣rb

∣

∣

)

+M223 +M3 = L

(A.10)
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