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Abstract

The present paper studies the soil-structure interaction (SSI) effects on the dy-
namic properties of offshore wind turbines (OWT) founded on monopiles. For that
purpose, a three degrees-of-freedom substructuring model based on modal param-
eters is proposed. The whole superstructure is reduced to a punctual mass by its
fundamental modal mass and height, while the pile-soil stiffness is represented by
the corresponding impedance functions. The proposed model, together with char-
acteristic relations between the fixed-base fundamental frequency and the modal
parameters obtained from data of existent OWTs found in the literature, is used
to analyse the influence of the superstructure and foundation dimensions and soil
profile on the magnitude of the SSI phenomena. The obtained results confirm the
relevance of including the foundation stiffness in the design stage of OWT systems,
as variations in the fundamental frequency close to 15% can be produced. The
homogeneous assumption, even if cs,30 mean values are assumed, yields to mislead-
ing results if the actual soil profile presents properties that vary with depth. The
superficial layers of the soil profile are found to play a major role in the estimation
of the OWT system fundamental frequency and damping when the SSI phenomena
are included.
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1 Introduction

In the last years, the use of Offshore Wind Turbines (OWT) has experienced a great
increment owing to the reduction in cost and the increase in the generators size and
power. However, further research is demanded in order to better understand the dynamic
behaviour of their supporting structure and so that design and lifespan can be improved.

The principal foundation type for OWTs is the monopile (80.1% of the OWT installed
in Europe are founded on monopiles according to EWEA [1]). Monopile foundations
consist of a short hollow pile with large diameter that is driven into the seabed, and are
commonly used for water depths of 20-40 meters. The simplicity of the construction and
assembly is the principal advantage of this foundation type. However, the pile is a very
slender structure and, consequently, more flexible than other foundation configurations
(e.g. gravity based or jackets). The soil-structure interaction (SSI) effects have to be
carefully considered when studying the dynamical behaviour of the OWT, being these
effects highly dependent of the foundation typology used.

One of the principal effects of the SSI is the change of dynamic properties, i.e. fun-
damental frequency and damping, of the foundation-structure system with respect to the
fixed-base structure. The variation in the eigenfrequency has to be carefully considered
when designing the OWT structure in order to avoid resonance with the excitation fre-
quencies and the corresponding increase in fatigue damage. Besides the wind and wave
loads that present a frequency content below 0.1 Hz, the principal frequencies to avoid
are the rotor frequency (1P) and the blade-passing frequency (3P or 2P depending on the
number of blades). The first corresponds to rotor or aerodynamic unbalance loads, while
the latter is produced by the shadowing effect from the wind of the blades passing the
tower. The DNV [2] recommendation is to keep the tower frequency outside the ±10%
range of these frequencies. Additionally, depending on the relation between the tower
fundamental frequency and the aforementioned frequencies, three classical designs are
distinguished [3, 4]: soft-soft if the tower frequency is below the 1P, soft-stiff if it is be-
tween 1P and 3P, and stiff-stiff when the structural eigenfrequency is higher than 3P. The
soft-soft design is usually avoided as it corresponds to very flexible structures and shows
the eigenfrequency near to the wind and wave loads. On the other hand, the stiff-stiff
design is not a common choice owing to the high material requirements in order to reach
the desired frequencies. Thus, the soft-stiff design is the one that is usually adopted. This
design causes the OWT natural frequency to be within a very narrow range, highlighting
the importance of an accurate estimation.

Despite giving a proper literature review is out of the scope of the present paper, the
authors want to refer the interested readers to the works of Galv́ın et al. [5], Bisoi and
Haldar [6], Damgaard et al. [7], or Zaaijer [8], where numerous recent studies addressing
the influence of the SSI effects on the variation of the OWT tower eigenfrequency and
damping are presented.

The present work proposes a simplified substructuring model based on modal parame-
ters to analyse the variations in the fundamental frequency and damping of OWT systems
due to the SSI effects. The whole superstructure is reduced to a punctual mass through
its modal mass and height. On the other hand, the foundation stiffness is addressed
through impedance functions obtained numerically by an integral time-harmonic model.
This model makes use of Green’s functions for the layered half space to represent the
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soil behaviour and treats the pile, discretized by the FEM as a Timoshenko beam, as a
load line acting within the soil. The one degree-of-freedom mass and the impedance func-
tions are then coupled together into the proposed simplified substructuring model, and
the modal approach is validated against a more elaborated substructuring FEM model
considering the complete superstructure dimensions. Then, the proposed methodology is
applied to study the influence of the soil-structure system properties on the magnitude
of the SSI effects, paying special attention to the soil profile. The analyses are carried
out by assuming characteristic structural properties obtained from data of actual OWT
systems and soil profiles based on boreholes of the North Sea.

2 Problem Statement

2.1 Problem definition

This paper addresses the dynamic characterization of OWT structures founded on monopiles.
The system is assumed to be composed by a conical hollow tower, rotor and generator
nacelle located at the tower top, and a monopile acting as foundation (see Fig. 1). The
tower is connected to the monopile through a transition piece, which is a cylindrical hol-
low beam presenting some working platforms that give access to the OWT structure for
maintenance or repair activities. The monopile is assumed to be a cylindrical hollow beam
that is driven into the seabed and that is composed by two different parts: the above-soil
portion and the embedded portion, both presenting the same cross-section. The tower
and pile are assumed to be made of the same material.

The system geometrical and material properties are: tower length Ht, tower top and
bottom external diameters Dtop and Dbot, ratio between the tower cross-section inner
and outer diameters δt (henceforth, thickness ratio), mass of the blades and generator
nacelle MRNA, above-soil pile length Hp, pile embedded length Lp, pile external diameter
Dp, pile thickness ratio δp, Young’s modulus E and density ρ. Owing to the small aspect
ratios that the embedded pile can present in this type of constructions, the Timoshenko’s
beam theory is used to model it. Thus, additional geometrical and material properties
are required for the embedded pile: Poisson’s ratio νp, shear coefficient α, and material
hysteretic damping ratio ξp.

Finally, the problem is completely defined by knowing the water depth Hw and density
ρw, and the soil profile given by the shear wave velocity cs, which can change depending
on the depth; and soil Poisson’s ratio νs, soil density ρs and soil hysteretic damping ratio
ξs, which are assumed to keep the same value for the whole profile.

The OWT system can be divided into two different parts: the superstructure (above
soil) and foundation (under soil). By considering an infinite rigid base, the superstruc-
ture dynamic behaviour can be easily characterized by its fundamental frequency fn and
damping ratio ξ. However, if the foundation flexibility is included in the analysis, the
SSI effects produce a reduction in the system fundamental frequency and changes in the
damping ratio. The aims of this paper are computing these changes by obtaining the
flexible-base fundamental frequency f̃n and equivalent damping ratio ξ̃, and studying how
the superstructure, the foundation and the soil profile characteristics affect them.
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Figure 1: Representation of a generic OWT and identification of geometrical and material
parameters.

2.2 Set of existent OWTs taken as starting point

Different OWT systems that can be found in the literature are selected for analysis in this
study. Their properties and details are presented in Table 1. OWTs 1-12 were extracted
from the work of Lombardi [9], and correspond to wind turbines from different wind
farms already built in the UK. For each farm, a range of hub heights was indicated, so
the maximum and minimum values are considered. Only information about diameters
and thickness of the Vestas towers was available, so these dimensions are assumed for the
Siemens towers too. On the other hand, OWTs 13 and 14 correspond to systems that
have been widely studied in different works [e.g. 10–13]. Thus, more detailed information
about them was accessible.

However, for the selected cases, there are very few details available about the dimen-
sions of the transition piece and the length of the pile outside the seabed. For this reason,
the transition from pile to tower is assumed to be produced at water level, so the pile
length is equal to the water depth (Hp = Hw). On the other hand, some structures present
a constant wall thickness, while others have a thickness that varies along the height. In
order to define all the studied OWT systems in a coherent way, the thickness ratio is kept
constant for the whole length. By doing so, thicker walls are presented at the tower base,
where the largest diameter is located. The values of δt presented in Table 1 are obtained
as the mean value of the ones corresponding to the tower top and bottom sections.

For all the structures, the towers and piles are assumed to be made of steel. Thus, a
Young’s modulus E = 210 GPa, a Poisson’s ratio νp = 0.25 and a density ρ = 7850 kg/m3

are assumed. In addition, for the embedded piles, the hysteretic damping coefficient is
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Table 1: Definition of the set of existent OWTs used in the present study.
OWT 1-2 3-4 5-6 7-8 9-10 11-12 13 14

Vestas Vestas Vestas Siemens Vestas Siemens North Hoyle Walney S 1
2MW-V66 3MW-V90 2MW-V80 SWT-3.6-107 2MW-V80 SWT-3.6-107 2MW-V80 3.6MW

MRNA (t) 80 111 94 220 94 220 100 234

Ht (m) 60-78 80-105 60-100 80-96 60-100 80-96 70 83.5
Hw (m) 11 10 20 19 21 25 11 20
Lp (m) 15 28 31 11 33 30 33 31

Dtop (m) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 3.0
Dbot (m) 4.2 4.2 4.2 4.2 4.2 4.2 4.0 5.0
δt (%) 98.0 98.0 98.0 98.0 98.0 98.0 97.6 97.9

Dp (m) 3.5 4.3 4.2 4.7 4.0 4.7 4.0 4.2
δp (%) 97.4 97.9 97.6 97.7 98.2 97.7 97.5 97.6
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Figure 2: Soil profiles used in the study. Evolution of the shear wave velocity with depth.

set to ξp = 2% and the shear coefficient of a hollow circular cross-section α = 0.5 is used.
On the other hand, a fixed-base modal damping ratio of the structure ξ = 1% is assumed.
For the water density, ρw = 1000 kg/m3 is considered.

2.3 Soil profile definition

The soil profiles assumed for the sites in the analyses are presented in terms of the shear
wave velocity cs in Fig. 2. The value of the cs,30 [14] for each profile is also displayed above
each plot as it is widely used to characterize the soil. The selected profiles corresponds to
C (180 < cs,30 < 360 m/s) or D soils ( cs,30 < 180 m/s) which are the ones where OWT
systems are usually founded on.

The principal profiles are two typical boreholes (Nelson Field and Hutton TLP) of the
North Sea [see 15] which consist of different layers of clay and sand. The values of the
shear wave velocity depend on the soil material and depth, and are estimated through
Eq. (1), proposed by Ohta and Goto [16] and where P = 1.000, 1.260 or 1.286 for clay,
fine sand and medium sand, respectively.

cs = 78.98 z0.312 P [m/s] (1)

Additionally, two soils formed only by clay or medium sand are studied as limit scenar-
ios. Finally, two homogeneous and two variable profiles with identical values of cs,30 = 180
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and 360 m/s are selected in order to present results for a wider range of soils and being
able to analyse the effects of the soil non-homogeneity. The latter variable profiles follow
the evolution with depth presented in Eq. (1).

As depicted in Fig. 2, the studied profiles are discretized by piece-wise homogeneous
layers of 1 m thickness (see Section 3.1). For depths greater than 80 m, the shear velocity
is assumed to be constant with depth (half space domain). Soil density ρs = 1800 kg/m3,
Poisson’s ratio νs = 0.35 and hysteretic damping factor ξs = 5% are kept constant for
the whole profile. These soil properties are similar to the ones used in other works for
study monopiled OWT systems (see for instance Damgaard et al. [17, 18] or Zania [19])
and can be considered to be representative of common foundation grounds for this type
of structures (modelled as equivalent elastic media) in regard to the aspects studied in
this piece of research. The influence of the Poisson’s ratio on the parameters analysed
herein was studied and found to be negligible after obtaining virtually the same results
for νs = 0.35−0.49 (not shown for the sake of brevity), which agrees with the conclusions
recently drawn by Damgaard et al. [18].

3 Methodology

The proposed methodology consists of a three-step procedure which results in a simplified
model that allows to study the variation of the fundamental frequency and damping due
to the foundation stiffness. Fig. 3 sketches out these steps: First of all, the fixed-base
superstructure system is reduced to a single-degree-of-freedom system in terms of its shear
effective modal mass and height (b). Then, the foundation stiffness is modelled through
the corresponding impedance functions (c). Finally, both parts are coupled together into
a three degrees-of-freedom substructuring model (d). In the following sections, each step
is further detailed.

3.1 Foundation modelling

The foundation stiffness is represented by a set of impedance functions (Kij) which re-
lates the force (moment) in direction i with the displacement (rotation) in direction j.
Impedance functions are frequency-dependent and complex-valued, with real and imagi-
nary terms representing the stiffness and damping components, respectively. As the lateral
response of the structure is studied, only the lateral, rocking and coupled lateral-rocking
impedances are needed (Fig. 3c).

The impedance functions are obtained by a previously-developed three-dimensional
time-harmonic numerical model [20] where the soil is represented by an integral formu-
lation based on the dynamical reciprocal theorem and the use of Pak and Guzina [21]
Green’s functions for a multilayered half space. The pile is modelled by the FEM as a
Timoshenko beam and considered as a load line within the soil domain, so that its pres-
ence does not alter the soil continuity. Linear behaviour of soil and piles is assumed as
well as welded boundary contact condition in the pile-soil interface. Similar assumptions
were made by Padrón et al. [22, 23].

The soil equations are obtained from the integral expression of the reciprocal theorem
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Figure 3: Stages of the proposed methodology. (a): System real geometry. (b): Super-
structure representation through modal parameters. (c): Foundation stiffness representa-
tion through impedance functions. (d): Simplified substructuring model.

in elastodynamics [24]:

∫

Γ

p∗u dΓ +

∫

Ω

b∗u dΩ =

∫

Γ

pu∗ dΓ +

∫

Ω

bu∗ dΩ (2)

where u,u∗ are the displacements at any point of the domain under study Ω (layered half
space); p,p∗ are the tractions acting over the boundary Γ = ∂Ω; b,b∗ are the body forces
acting inside the domain; and the star index �

∗ denotes the variables of the fundamental
solution. Considering that the Green’s functions used as fundamental solution already
satisfy the free surface and layer interfaces boundary conditions; and that in the studied
problem the only forces acting over the domain correspond to the load lines representing
the piles, the expression of the reciprocal theorem can be reduced to:

uκ =

∫

Γl

u∗q
s
l dΓl (3)

where uκ are the displacements at the collocation point κ, u∗ the tensor that contains
the fundamental solution when the unit load is placed at point κ, and qs

l the tractions
along the load line Γl representing the pile-soil interaction tractions acting on the soil.
Discretizing the pile and applying Eq. (3) to all the pile nodes results in the matrix
equation:

u = Gqs (4)

being u the nodal displacements of the pile, G the matrix of coefficients obtained by
integrating the fundamental solution times the elemental shape functions, and qs the
pile-soil tractions (acting on the soil) at the pile nodes.

On the other hand, the pile FEM equation is:

K̄u−Qqp = Ftop (5)
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where K̄ is obtained from the stiffness and mass matrices as: K̄ = K(1 + 2iξp) − ω2M,
being i the imaginary unit and ω the angular frequency; Q is the matrix that transforms
the distributed soil-pile tractions acting along the pile qp into nodal forces; and Ftop are
the external forces acting on the pile head.

Both formulations are coupled imposing compatibility and equilibrium (qs = −qp)
conditions along the load-lines, resulting in a system of linear equations. For the com-
putation of each impedance term, the corresponding pile head displacements boundary
conditions are established and the system of equations is solved for the pile head forces.

3.2 FEM model for the dynamic characterization of the super-

structure

The application of the simplified three-step procedure mentioned above implies the need
of defining effective masses and heights for every configuration. These are often obtained
through explicit expressions derived for simplified geometries. In the present case, the
realistic geometrical properties assumed herein for the problem under study do not allow
following the same strategy. For this reason, the mass and height that will be used below
for the characterization of the superstructure are obtained through a modal analysis based
on a finite elements representation of the system, which will also allow the assumption of
different properties for each structural section. At this step, fixed-base conditions will be
assumed.

The superstructure, composed by the conical tower and the above-soil portion of the
slender pile, is modelled as Bernoulli beams. For this type of structures, differences with
respect to a more elaborated Timoshenko theory are negligible [11]. Constant-section two-
noded four-degrees-of-freedom Hermitian beam elements are used for the discretization
of both both the cylindrical (pile) and conical (tower) lengths. A high enough number
of elements, set by proper convergence studies, is used to correctly represent the conical
tower stiffness.

The generator and rotor masses are added as a punctual mass at the tower tip node.
The hydrodynamic water added mass plus the mass of the internal water are also consid-
ered for the submerged elements. This additional mass is included by using a modified
density ρ̄ = ρ+ρw(Cm+ δ2)/(1−δ2) for the computation of the translational inertia mass
matrix of the submerged beam elements. An added mass coefficient Cm = 1 is assumed in
this study. The consideration of the additional water mass, despite significantly increasing
the system total mass, does not affect the obtained results for the fundamental mode of
vibration, as observed by Zania [19].

Considering harmonic displacement and forces, the fundamental frequency and its
modal shape are obtained by solving the eigenvalues problem:

∣

∣K− ω2M
∣

∣ = 0 (6)

where K and M are the superstructure stiffness and mass matrices obtained by the
assembly of the elemental ones. As this equation is used to obtain the system modes of
vibration, no damping is considered.

The fundamental frequency ωn = 2πfn and its modal shape φn are obtained as the
smallest eigenvalue (frequency) and its eigenvector (shape). Once the modal shape is
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known, the base shear effective modal mass M∗ and height H∗ of the system to a base
acceleration excitation can be obtained through [see, e.g. 25]:

M∗ =

(

φT
nMι

)2

φT
nMφn

; H∗ =
hTMφn

φT
nMι

(7)

where ι is the influence vector presenting unitary values in the terms that corresponds to
lateral displacements and zeros in the components corresponding to rotations; and h is
the vector containing the height of each node in the terms that correspond to its lateral
displacements and unitary values in the components corresponding to rotations.

The base shear effective modal mass (henceforth modal mass) coincides with the mass
of a single-degree-of-freedom system that produces the same base shear force as the com-
plete system vibrating at the corresponding modal frequency. On the other hand, the
base-moment effective modal height (henceforth modal height) is the height of the afore-
mentioned modal mass at which its inertia force produces the same base overturning
moment as the distributed masses of the system at the modal frequency. The modal mass
and height can also be obtained for all the modes of vibration by using expression (7)
with the corresponding modal shapes. For higher modes negative modal heights can be
obtained, which would imply that the base shear force and moment have opposite alge-
braic signs. The choice of these parameters to represent the system is made as the base
shear force and moment are the reactions that interact with the foundation impedance
functions.

3.3 Substructuring model for the analysis of the system

Once the modal parameters of the OWT in fixed-base conditions and the impedance
functions representing the soil-foundation system are obtained, they are coupled together
reducing the problem to a three degrees-of-freedom model representing the complete sys-
tem as depicted in Fig. 3d, where u is the mass lateral displacement relative to the
base and ub and θb are the base displacement and rotation. In coherence with the model
used for the computation of the fixed-base modal parameters, a given harmonic free-field
ground lateral acceleration üg is defined as system excitation. The equations of motion
of the simplified problem can then be expressed in matrix form as:









K∗ 0 0
0 KHH(ω) KHR(ω)
0 KRH(ω) KRR(ω)



−M∗ω2





1 1 H∗

1 1 H∗

H∗ H∗ (H∗)2















u
ub

θb







= −M∗üg







1
1
H∗







(8)
where K∗ = (2πfn)

2M∗(1+ 2iξ) is the lateral structural stiffness associated with the first
mode that also includes the structural damping through the modal damping factor ξ,
and KHH(ω), KRR(ω), KHR(ω) and KRH(ω) are the lateral, rocking and coupled dynamic
stiffness and damping functions.

In order to obtain the flexible-base fundamental frequency and damping ratio, the
methodology of finding an equivalent single-degree-of-freedom oscillator that reproduces
the system response is used [see, e.g. 26, 27]. In this study, a hysteretically damped
oscillator with natural frequency ω̃n and damping ratio ξ̃ is assumed and the equivalence
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Table 2: Validation of the proposed three-step formulation against the FEM model.
Flexible-base fundamental frequency for the OWT systems. Results for the Nelson Field
soil profile.

OWT 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f̃n (Hz) 0.44 0.32 0.31 0.21 0.42 0.22 0.23 0.18 0.37 0.20 0.22 0.17 0.37 0.22
error (%) 0.38 0.25 0.12 0.07 0.53 0.16 0.19 0.12 0.34 0.12 0.16 0.09 0.24 0.19

is established in terms of the transfer function:

Q(ω) =

∣

∣

∣

∣

ω2
nu

üg

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1
(

1−
ω2

ω̃2
n

)

+ 2iξ̃

∣

∣

∣

∣

∣

∣

∣

∣

(9)

which represents the shear force at the base of the structure per effective seismic force [25].
As the single-degree-of-freedom system can not reproduce the response of the substruc-
turing model in all the frequency range, the maximum value Qm of the transfer function
is chosen as common point between both models. This maximum value is obtained by
iteratively solving Eq. (8). The flexible-base fundamental frequency corresponds to the
frequency at which this maximum value takes place, while the equivalent damping ratio
is computed as ξ̃ = 1/(2Qm).

In order to validate the ability of the proposed formulation to correctly capture the
flexible-base fundamental frequency, an enhanced FEM model where the presence of the
soil-pile system is included through the corresponding impedance functions is used. For
that purpose, the displacement of the superstructure due to the ground horizontal accel-
eration and considering the foundation stiffness and damping is obtained by solving the
equation:

(

K′ (ω)− ω2M
)

U = −Mιüg (10)

beingK′ (ω) the superstructure stiffness matrix including the foundation dynamic stiffness
and damping functions in the terms that correspond to the ground node and U the
vector containing the nodal lateral displacements and rotations relative to the ground
displacement. The flexible-base fundamental frequency is then obtained as the one at
which the maximum response, in terms of Q(ω), takes place.

The flexible-base fundamental frequencies of the OWTs defined in Table 1 are com-
puted through both the proposed three-step and the enhanced FEM formulations. Ta-
ble 2 shows the computed modified eigenfrequencies together with the errors committed
with respect to the enhanced FEM model, considering the Nelson Field soil profile. The
results show negligible differences between both methodologies, revealing the ability of
the proposed strategy to correctly represent the effects of the foundation on the system
fundamental frequency. Results for harder soils were also obtained producing smaller
differences, but are not presented for simplicity’s sake.

It is important to notice that both the three-step and the FEM approaches are sub-
structuring methodologies, as they incorporate the foundation impedance functions. The
principal difference between them is that the three-step formulation makes use of the fun-
damental modal mass and height concepts (and therefore considers the fundamental mode
only), while the FEM model does not, and takes all modes into account. The validation
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results show that the flexible-base fundamental frequency can be accurately estimated by
using the three-step approach owing to the fact that the first mode of the soil-structure
system is principally influenced by the first mode of the fixed-base structure. However,
the three-step methodology does not guarantee a correct estimation of the modified nat-
ural frequencies for higher modes. The principal advantage of the proposed three-step
methodology lies in its efficiency and suitability for undertaking parametric studies.

4 Results

4.1 Analysis of the modal properties of the set of OWTs

The results of the modal analysis following the methodology presented in Section 3.2 for
the studied OWT systems are shown in Table 3. For each structure, their fixed-base
fundamental frequency and modal mass and height are listed. The latter parameters are
also presented as the ratio with respect to the system total mass Mtotal (including the
mass of submerged pile, tower, nacelle and water added mass), or the system total height
Htotal (obtained as the sum of the submerged pile and tower lengths). The fixed-base
fundamental frequencies are found to be between 0.2-0.55 Hz, agreeing with the typical
range for OWT constructions. On the other hand, the values of the modal mass and
height are related to the structural dimensions. The modal mass is found to be 25-35% of
the system total mass, while the modal height coincides with 85-90% of the system total
height.

The obtained modal parameters for the studied OWT systems are plotted against
each other in Fig. 4. A strong correlation is found for all the three possible combinations.
A particularly high dependence between the modal height and fixed-base fundamental
frequency is found. In order to derive an expression that relates the modal parameters,
the computed modal mass and height values are fitted by first and second order polyno-
mials as functions of the superstructure fixed-base eigenfrequency, yielding the following
expressions:

H∗(fn) = 130− 138fn [m] (11a)

M∗(fn) = 4.24− 4.84fn [105 kg] (11b)

H∗(fn) = 161− 341fn + 292f 2
n [m] (12a)

M∗(fn) = 5.92− 8.97fn + 4.89f 2
n [105 kg] (12b)

Table 3: Modal parameters for the OWT systems.
OWT 1 2 3 4 5 6 7 8 9 10 11 12 13 14
fn (Hz) 0.53 0.37 0.35 0.23 0.49 0.24 0.25 0.19 0.42 0.22 0.24 0.19 0.42 0.26

H∗ (m) 60.8 75.4 80.1 100 66.3 100 91.0 105 65.2 98.7 94.3 109 70.8 89.1
H∗/Htotal 0.86 0.85 0.89 0.88 0.83 0.84 0.92 0.92 0.81 0.82 0.90 0.90 0.87 0.86

M∗ (t) 170 188 206 232 216 239 329 341 236 258 355 363 203 469
M∗/Mtotal 0.34 0.35 0.31 0.32 0.24 0.24 0.27 0.27 0.28 0.27 0.24 0.24 0.32 0.38
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Figure 4: Modal parameters for the studied set of OWT (crosses). Polynomial regressions
of the modal height (a, solid lines) or mass (b, solid lines) as a function of the fixed-base
fundamental frequency. Relation between the modal mass and modal height obtained by
using the regressed expressions (c, dashed lines).

The proposed polynomials are also plotted in Figs. 4a,b as solid lines, showing that
modal height and mass can be fitted without significant errors by both the linear and
quadratic expressions. Dispersion is higher for modal mass than for modal height. The
modal mass corresponding to OWT number 14 is the only one that does not adequately
fit in the obtained mass-frequency relations. This structure has a higher modal mass
owing to its thick tower and pile walls when compared to the rest of the studied systems.
Finally, Fig. 4c shows the relations between modal mass and height obtained by using the
proposed polynomials. Eqs. (11) or (12) correctly represent the relation between both
parameters. The use of these expressions is not recommended outside the frequency range
0.15-0.60 Hz shown in Figs 4a,b.

Now, and once the fixed-base fundamental frequency is set, modal mass and modal
height can be accurately modelled through Eqs. (11) or (12), reducing the number of
parameters needed to represent the superstructure. By doing so, instead of a discrete
number of structures, a wider set of OWT systems representing the typical dimensions
for this type of constructions can be included in the results presented in the following
sections. Both the quadratic and linear expressions are used: the first fits the data better,
while the constant slope of the latter allows to easily understand the contribution of each
parameter.

4.2 Analysis of the pile dimensions of the set of OWTs

Now that the superstructure is completely defined, it is necessary to establish the di-
mensions of the monopile foundations. Following the same procedure as for the modal
parameters, Fig. 5 presents the relation between the pile diameter (a) or pile embedded
length (b) and the modal parameters for the OWT systems defined in Table 1. The data
are fitted again by first and second order polynomials.

A high correlation is found between the pile diameter and the superstructure fixed-base
fundamental frequency, showing that smaller pile diameters tend to correspond to shorter
and more rigid structures. The fitting procedure yields to the following expressions,
plotted as solid lines in Fig. 5a:

Dp(fn) = 4.97− 2.40fn [m] (13)
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Figure 5: Pile diameter (a) and pile length (b) with respect to superstructure modal
parameters for the studied OWT systems (crosses). Polynomial regressions of the pile
diameter as a function of the fixed-base fundamental frequency (a, solid lines). Relations
between the pile diameter and modal height or mass obtained by using the regressed
expressions (a, dashed lines). Polynomial regressions of the pile embedded length as a
functions of the fixed-base fundamental frequency (b, solid lines).

Dp(fn) = 5.40− 5.15fn + 3.93f 2
n [m] (14)

The use of these expressions together with Eqs. (11) and (12) adequately represents the
relations between the pile diameter and superstructure modal mass and height too, as
shown by the dashed lines in Fig. 5a.

On the other hand, the pile length can not be correctly adjusted by the polynomial
fitting as a function of the fixed-base fundamental frequency. In this type of constructions,
the pile embedded length is more dependent on the soil properties than on the superstruc-
tural dimensions. Thus, different values of the pile length can be assumed independently
of the fixed-base fundamental frequency.

Finally, the pile wall thickness value is established following the API [28] recommen-
dation as a function of the pile diameter:

tp ≈ 6.37 +
Dp

100
[mm] (15)

Note that δp = (Dp − 2tp)/Dp.

4.3 Definition of the characteristic properties for the parametric

analysis

As commented in the previous section, if Eqs. (11) or (12) are used, the superstructure
can be defined by setting the fixed-base fundamental frequency and the structural modal
damping. Values between 0.15-0.60 Hz are used as a common range within which the
OWT fixed-base eigenfrequency is found. On the other hand, for the fixed-base modal
damping ratio a value of ξ = 1% is chosen following the recommendation of the GL [29]
Guideline.

The pile diameter and wall thickness are also known once the fixed-base fundamental
frequency is set by using Eqs. (13) or (14) and (15), respectively. Aiming at studying
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Figure 6: Flexible-to-fixed-base natural frequencies ratio and equivalent-to-structural
dampings ratio. Comparison between the results of the regressed (lines) and real (crosses)
modal parameters and pile dimensions. Results for the Nelson Field soil profile. Pile
length Lp = 25 m for the regressed dimensions.

different foundation geometries, three values of pile embedded length Lp = 15, 25 and 35
m are considered.

4.4 Influence of the superstructures parameters on the magni-

tude of the SSI phenomena

In order to explore the influence of the OWT fundamental frequency and damping on the
magnitude of the SSI phenomena, Fig. 6 presents the ratios f̃n/fn (flexible-to-fixed-base
natural frequencies ratio) and ξ̃/ξ (equivalent-to-structural dampings ratio) as a function
of the fixed-base fundamental frequency of the superstructure computed as detailed in
Section 3.3. The results are obtained assuming the Nelson Field soil profile. The crosses
correspond to the results for the studied OWT systems whose modal properties are defined
in Table 3 and pile dimensions in Table 1. On the other hand, the lines present the results
that are obtained by using the regressions (11) to (15) and assuming a pile embedded
length Lp = 25 m. Attending to Fig. 6, the curves from the fitted polynomials follow the
overall trends of the points representing the actual OWT systems, both in the frequency
and damping variations. Thus, the use of the fitting expressions is justified for the general
study of the SSI effects on the dynamic properties of OWT structures.

At low frequencies (fn < 0.45 Hz), virtually the same results are obtained from the
use of both the linear or quadratic fitting. However, at higher frequencies (fn > 0.45
Hz), the curves diverge owing to the differences that are produced at these frequencies
in the regression polynomials, specially the ones of the modal mass and height (see Fig.
4). The quadratic expressions are found to better adjust the real points, but, as only two
points are available within this frequency range, one can not discern if it represents the
real trend or if it is produced by overfitting issues.

In order to explain the curve shapes and the differences observed between the results
of the real and fitted data, one has to consider the influence of each modal parameter
(fixed-base frequency, modal mass and height) on the magnitude of the SSI phenomena.
All of these parameters have the same effect: increasing its value amplifies the magni-
tude of the SSI (i.e. fundamental frequency reduction and damping gain). This can be
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Table 4: Impedance functions at the flexible-base fundamental frequency of the studied
OWT systems. Nelson Field soil profile. (Units in GN, m)

OWT 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f̃n/fn 0.829 0.858 0.909 0.929 0.866 0.915 0.897 0.914 0.876 0.917 0.919 0.933 0.875 0.857

ξ̃/ξ 1.608 1.505 1.321 1.250 1.469 1.295 1.547 1.456 1.435 1.290 1.284 1.234 1.434 1.484

Re[KHH ] 0.862 0.866 1.193 1.196 1.149 1.156 1.286 1.287 1.075 1.080 1.361 1.363 1.075 1.156
Im[KHH ] 0.077 0.075 0.102 0.099 0.102 0.096 0.107 0.105 0.093 0.089 0.114 0.112 0.093 0.096

Re[KRR] 32.01 32.03 59.96 59.99 55.69 55.75 73.32 73.34 48.17 48.21 78.45 78.47 48.17 55.75
Im[KRR] 1.685 1.650 3.111 3.051 2.954 2.835 4.259 4.211 2.518 2.439 4.008 3.967 2.518 2.837

Re[KHR] -3.511 -3.520 -5.633 -5.642 -5.330 -5.349 -7.289 -7.295 -4.799 -4.812 -6.878 -6.883 -4.799 -5.349
Im[KHR] -0.241 -0.232 -0.376 -0.363 -0.371 -0.344 -0.470 -0.461 -0.325 -0.307 -0.447 -0.439 -0.325 -0.345

easily explained for the modal mass and fixed-base fundamental frequency: when one of
these parameters augments while keeping the other constant, an increment of the system
stiffness is produced. Thus, the foundation becomes relatively softer compared to the
superstructure, resulting in more significant SSI phenomena taking place. On the other
hand, the increasing importance of SSI effects for higher wind turbines is in line with
the results of Zania [19], and also agrees with the conclusions of Veletsos and Meek [26]
or Stewart et al. [30] showing that the SSI effects becomes more evident as the wave
parameter (σ = cs/Hfn) decreases.

Attending to this, the shape of the curves in Fig. 6 can be explained considering that,
in their first part (fn < 0.45 Hz) the magnitude of the SSI phenomena increases with the
fixed-base natural frequency; while in the second part (fn > 0.45 Hz) the effect of the
reduction in the modal mass and height (Fig. 4) overtakes the effect of the increment in
the eigenfrequency if the linear expressions are used. On the other hand, if the quadratic
relations are considered, only the frequency effect is present as the modal mass and height
remain practically the same in the high frequency range, explaining why the magnitude
of the SSI phenomena continues increasing with the fixed-base natural frequency. These
results also prove the importance of including the SSI effects in the preliminary designs
of OWT structures. For fn < 0.25 Hz, the f̃n/fn ratio is found to be around 0.92 (8%
reduction) while for fn > 0.25, this reduction can be greater than 15%, with one data
point at fn ≈ 0.25 yielding a f̃n/fn ratio much smaller than the one obtained from the
fitted expressions, and with the effects of SSI growing with the fixed-base fundamental
frequency of the superstructure.

The results in terms of the flexible-to-fixed-base fundamental frequencies ratio (f̃n/fn)
and equivalent-to-structural dampings ratio (ξ̃/ξ) for the set of studied OWT systems
are also presented in Table 4 together with the real and imaginary components of each
impedance term evaluated at the flexible-base fundamental frequency. This information
gives an insight into the magnitude of the stiffness and damping contribution of the
foundation and how it changes depending on the monopile dimensions. On the other
hand, the impedance functions, together with the f̃n/fn and ξ̃/ξ ratios, corresponding
to the use of the regressed expressions and assuming the different soil profiles can be
consulted as supplementary material in the online version of the manuscript.
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Figure 7: Influence of the soil profile on the flexible-to-fixed-base natural frequencies ratio
and equivalent-to-structural dampings ratio. Pile length Lp = 25 m.

4.5 Parametric analysis of the influence of the SSI effects on the

dynamic properties of OWT on monopiles

4.5.1 Influence of soil profile

Figs. 7 and 8 present the flexible-to-fixed-base natural frequencies ratio and the equivalent-
to-structural dampings ratio as a function of the fixed-base fundamental frequency of the
superstructure for the configurations described in Section 4.3. The results are grouped
according to the use of the linear or the quadratic fitting. All soil profiles introduced
in Section 2.3 are considered: first, Fig. 7 shows the results for the two typical North
Sea’s profiles (Nelson and Hutton), the Sand and Clay profiles, and the homogeneous soil
with cs,30 = 180 m/s as its value is the closest to the one of the Nelson Field profile.
Then, Fig. 8 compares the results obtained for the homogeneous and variable profiles
with cs,30 = 180 and 360 m/s in order to study the effects of harder soils and the influence
of the variable-with-depth profile.

The soil properties and profile evolution with depth have a direct influence on the mag-
nitude of the SSI effects, producing higher variations as the soil becomes softer. However,
the obtained results show the necessity of using a good measure to characterize the soil
flexibility. Using the cs,30 as a value to define the soil seems not to be a feasible option:
profiles with close (e.g. Nelson Field and Homogeneous in Fig. 7) or even the same (Fig.
8) value of this mean shear wave velocity produce different frequency and damping vari-
ations depending on the evolution with depth of the profile. Moreover, the homogeneous
assumption is a non-conservative hypothesis as those profiles produce smaller variations
in both the fundamental frequency and equivalent damping than variable profiles with
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Figure 8: Influence of the soil profile on the flexible-to-fixed-base natural frequencies
ratio and equivalent-to-structural dampings ratio. Comparison between soft and hard
soils and between homogeneous (solid) and variable-with-depth (dashed) profiles with
identical cs,30. Pile length Lp = 25 m.

similar or higher values of cs,30.
The superficial layers are the ones that govern the effects of the SSI on the dynamic

properties of the studied structures. Fig. 7 shows that Nelson Field, Hutton TLP and
clay profiles (which present identical properties along the first ∼ 10 meters) produce
virtually the same variations in the system fundamental frequency and damping. This
is related to the fact that the horizontal impedance of piles in non-homogeneous soils is
principally determined by the superficial layers [31, 32], being this impedance term of
crucial importance to the studied problem.

As expected, the magnitude of the SSI phenomena is less significant in harder soils
(Fig. 8). However, variations over 10% in the system fundamental frequency and over 30%
in the structural damping can be produced even for these hard soils. Fig. 8 shows again
the importance of accurately knowing the actual soil profile. Results for the variable-with-
depth soil with cs,30 = 360 m/s are closer to the ones for the cs,30 = 180 m/s homogeneous
profile rather than to the homogeneous soil with the same mean velocity.

4.5.2 Influence of pile diameter

The pile diameter has a decisive role in the variations in the fundamental frequency and
damping of the superstructure produced due to SSI effects. As the foundation stiffness
strongly depends on the pile diameter, increasing its value results in a great reduction
of the shifts in both the system eigenfrequency and damping. However, this role is not
clearly seen in the previous results, as the diameter is implicitly defined as a function of
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Figure 9: Influence of pile diameter and pile length on the flexible-to-fixed-base natural
frequencies ratio and equivalent-to-structural dampings ratio. Linear fitting. Lp = 15 m
(solid lines) and Lp = 25 m (dashed lines).

the fixed-base fundamental frequency. Fig. 9 presents the flexible-to-fixed-base natural
frequencies ratio and the equivalent-to-structural dampings ratio obtained by assuming
three frequency-independent pile diameters in addition to the results corresponding to
the use of the diameter linear regression (Eq. 13). As the same effects are found for all
the studied cases, only the results corresponding to the linear expressions and for two
soils profiles: Nelson Field and Homogeneous (cs,30 = 360 m/s) representing soft and hard
soils, respectively, are shown.

The curves obtained through the regressed pile diameter present an increment in
the magnitude of the SSI phenomena as the fixed-base frequency augments, due to the
reduction in the pile diameter (see Fig. 5). The effect of the pile diameter is almost
independent of the pile length or the soil profile. However, for the softest soil profile, the
differences between the results of the higher and lower diameters increase: e.g., for Nelson
Field, the highest variation in the system fundamental frequency goes from 0.81 to 0.91
depending on the diameter, while for the Homogeneous (cs,30 = 360 m/s) this variation
goes from 0.89 to 0.95.

4.5.3 Influence of pile length

Fig. 9 also presents the results obtained assuming two different pile embedment lengths:
Lp = 15 m and Lp = 25 m.

Contrary to the diameter, the pile length has little importance on the effects of the
foundation on the system fundamental frequency. Only for the highest diameter and
softest soil profile, some differences can be seen between the 15 m piles and the longer

18



one. This is produced because of the fact that for higher diameters (smaller L/D ratios)
the active length of the pile increases. Moreover, the differences between the 15 and 25 m
lengths increase for the variable-with-depth profiles, where longer piles can reach stiffer
layers. The above-mentioned effects are also manifested for the damping variations in a
greater extent. Lp = 25 m is found to be larger than the active pile length in all cases, as
results obtained for Lp = 35 m are completely coincident with those of Lp = 25 m (not
shown for the sake of clarity).

On the other hand, for harder soils (Homogeneous cs,30 = 360 m/s), the active length
for all diameters is below the 15 meters. Thus, no differences are observed between the
studied lengths in both the frequency and damping variations.

5 Conclusions

In this paper a substructuring procedure based on modal parameters is presented and used
to compute the variations in the structural fundamental frequency and damping due to
SSI effects. The superstructure is represented by its fixed-base fundamental frequency and
the first-mode base shear effective modal mass and height, while the foundation stiffness
is considered through impedance functions. The proposed modal procedure is applied to
OWT structures founded on monopiles and validated against an enhanced substructuring
FEM formulation resulting in a good agreement.

Data from different medium-sized existent OWT systems that are found in the liter-
ature is used to obtain characteristic relations between the fixed-base fundamental fre-
quency and the first mode effective height and mass. These relations are then employed to
study the dynamic behaviour of general OWT structures founded on different monopiles
and soil profiles. The obtained results confirm the importance of considering the foun-
dation stiffness in the design stage of OWT systems in order to keep its fundamental
frequency within the allowed range and to estimate the equivalent damping ratio of the
structure. This is specially relevant for foundations consisting of small diameter monopiles
on soft soils.

The magnitude of the SSI phenomenon is significant for fn > 0.25 Hz, and specially for
fn ≈ 0.45 Hz. This frequency range usually corresponds to a soft-stiff design, so special
attention is required for those systems whose fundamental frequency is close to the 1P
frequency. The recommendation of keeping the structural fundamental frequency ±10%
away from the 1P and 3P (or 2P for two-bladed rotors) frequencies may not be enough if
the foundation-structure fundamental frequency is not adequately computed, as the SSI
effects can reduce the fixed-base fundamental frequency more than a 15%.

The present study also highlights the importance of an accurate knowledge of the
soil properties and their evolution with depth when evaluating the foundation effects.
Mean values, such as cs,30, are insufficient for characterizing the soil stiffness. When
the assumption of soil homogeneity is unavoidable, authors recommend the use of soil
properties close to the ones corresponding to the superficial layers, as they are the ones
that govern the changes in the fundamental frequency and damping ratio due to SSI
effects.
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R., Maeso, O.. Efficient numerical model for the computation of impedance
functions of inclined pile groups in layered soils. Eng Struct 2016;126:379–390.
doi:10.1016/j.engstruct.2016.07.047.

[21] Pak, R.Y.S., Guzina, B.B.. Three-dimensional Green’s functions for a multi-
layered half-space in displacement potentials. J Eng Mech 2002;128(4):449–461.
doi:10.1061/(ASCE)0733-9399(2002)128:4(449).
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